Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concerning the contamination of phthalate esters (PAEs) in river sediments, this mini-review introduces four recently reported novel "integrated electrokinetic (EK) processes" for the remediation purpose, namely two combined technologies of the EK process and advanced oxidation process (EK-AOP Processes) and two combined technologies of the EK process and biological process (EK-BIO Processes). The following is a comprehensive summary for these remediation processes: (1) the EK process coupled with nano-FeO/SO oxidation process - Test results have shown that nanoscale FeO played a significant role in activating persulfate oxidation. Even a recalcitrant compound like di(2‑ethylhexyl)phthalate (DEHP), its concentration in test sediment was reduced to 1.97 mg kg, far below the regulatory levels set by Taiwan EPA; (2) the EK process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite (nano-SHM) - Test results have revealed that simultaneous injection of nano-SHM slurry and HO into the anode reservoir and sediment compartment is a good practice. 70-99% in removal efficiency was obtained for various target PAEs; (3) enhanced in situ bioremediation coupled with the EK process for promoting the growth of intrinsic microorganisms by adding HO as an oxygen release compound (ORC) - Test results have demonstrated that an intermittent mode of injecting lab-prepared ORC directly into the contaminant zone would be beneficial to the growth of intrinsic microorganisms in test sediment for in situ bioremediation of target PAEs; and (4) coupling of a second-generation ORC (designated 2G-ORC) with the EK-biological process - Test results have proved that 2G-ORC is long-lasting and can be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced biodegradation of PAEs. Except DEHP having a residual concentration of 4 μg kg, all other target PAEs in test sediment were totally removed by this novel combined remediation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.12.334 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!