Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polychlorinated biphenyls (PCBs) are synthetic mixtures of chlorinated hydrocarbon compounds that were widely used in the past and still found in the environment due to their highly recalcitrant nature. A combination of anaerobic dechlorination and aerobic oxidation is essential to degrade these PCB mixtures into less toxic products. It was hypothesized that due to the complexity of PCB mixtures, a consortium of carefully selected suitable microbial species will perform better than the application of individual microbes. In the present study, biodegradation of the commercial PCB mixture, Aroclor 1260, was studied under two different combined anaerobic-aerobic conditions, namely, alternating (AN) and two stage (TS). The facultative anaerobic bacterial consortium consisted of naturally occurring Achromobacter sp. NP03, Ochrobactrum sp. NP04 and Lysinibacillus sp. NP05. These bacteria were found capable as individuals of solubilizing and degrading PCBs under both anaerobic and aerobic conditions. 49.2 ± 2.5% total reduction of the original 50 mg/L Aroclor 1260 mixture was achieved after 2 weeks in AN treatment whereas the reduction was only 24.44 ± 2.46% in TS treatment. At the end of week 6, a yield of 17.63 ± 0.91 mg/L chloride released was measured under AN condition compared to 11.79 ± 1.28 mg/L measured under TS condition. The overall results suggested that the microbial consortia capable of degrading and utilizing PCBs under both, anaerobic and aerobic conditions achieved better PCB degradation by repeated exposure to short periods of anaerobic and aerobic conditions alternatingly rather than the conventional two stage anaerobic-aerobic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.12.385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!