Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the current challenges in burn wound care is the development of multifunctional dressings that can protect the wound from bacteria or organisms and promote skin regeneration and tissue reconstitution. To this end, we report the design and fabrication of a composite electrospun membrane, comprised of electrospun polylactide: poly(vinyl pyrrolidone)/polylactide: poly(ethylene glycol) (PLA:PVP/PLA:PEG) core/shell fibers loaded with bioactive agents, as a functionally integrated wound dressing for efficient burns treatment. Different mass ratios of PLA:PVP in the shell were screened to optimize mechanical, physicochemical, and biological properties, in addition to controlled release profiles of loaded antimicrobial peptides (AMPs) from the fibers for desirable antibacterial activity. Fibroblasts were shown to readily adhere and proliferate when cultured on the membrane, indicating good in vitro cytocompatibility. The introduction of PLA beads by electrospraying on one side of the membrane resulted in biomimetic micro-nanostructures similar to those of lotus leaves. This designer structure rendered the composite membranes with superhydrophobic property to inhibit the adhesion/spreading of exogenous bacteria and other microbes. The administration of the resulting composite fibrous membrane on burnt skin in an infected rat model led to faster healing than a conventional product (sterile silicone membrane) and control detailed herein. These composite fibrous membranes loaded with bioactive drugs provide an integrated strategy for promoting burn wound healing and skin regeneration. STATEMENT OF SIGNIFICANCE: To address an urgent need in complex clinical requirements on developing a new generation of wound dressings with integrated functionalities. This article reports research work on a hierarchical fiber/bead composite membranes design, which combines a lotus-leaf-like superhydrophobic surface with drugs preloaded in the core and shell of fibers for effective burn treatment. This demonstrates a balance between simplified preparation processes and increased multifunctionality of the wound dressings. The creation of hierarchically structured surfaces can be readily achieved by electrospinning, and the composite dressings possessed a considerable mechanical strength, effective wound exudate absorption and permeability, good biocompatibility, broad antibacterial ability and promoting wound healing etc. Thus, our work unveils a promising strategy for the development of functionally integrated wound dressings for burn wound care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.05.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!