Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules.

J Control Release

BrainLinks-BrainTools Center, University of Freiburg, Germany; Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany.

Published: June 2019

Spatio-temporally controlled drug release based on conducting polymer films offers a powerful technology to improve the tissue integration for implantable neuroprobes. We here explore the release efficiency of such systems in order to improve the understanding of the release mechanism and allow for optimized implementation of this technology into future drug release applications. By exposing drug loaded PEDOT coatings of different thicknesses to a multitude of release signals, along with optimizing the steps during the polymer synthesis, we could identify a highly reproducible electrostatically controlled drug release next to a slow diffusion driven release component. The release efficiency was moreover observed to be higher for a cyclic voltammetry signal in comparison to release driven by a constant potential. Biphasic current pulses, as used during neural stimulation, did not allow for long enough diffusion times to yield efficient active drug expulsion from the polymer films. A quantitative analysis could confirm an overall linear dependency between drug release and film thickness. The amount of drug released in response to the trigger signals was however not linearly correlated with the amount of charge applied. By combining these findings we could develop a model which accurately describes the drug release mechanism from a PEDOT film. The proposed model thereby points the way for how actively controlled, and diffusion related, release can be tuned for obtaining delivery dynamics tailored to specific applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2019.05.017DOI Listing

Publication Analysis

Top Keywords

drug release
20
release
13
polymer films
12
conducting polymer
8
drug
8
controlled drug
8
release efficiency
8
release mechanism
8
tuning drug
4
drug delivery
4

Similar Publications

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Circadian aspects in nonpharmacologic and pharmacologic treatment of insomnia.

Handb Clin Neurol

January 2025

Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy; Department of Neuroscience, Psychology Unit, University of Pisa Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy.

Insomnia disorder is a frequent sleep disorder leading to significant health and economic consequences. It has been proposed that individuals with insomnia may experience compromised deactivation systems of arousal, leading to a chronic state of hyperactivation of arousal known as hyperarousal, along with instability in the flip-flop system. Such disruptions may have a primarily impact on the sleep homeostatic drive process.

View Article and Find Full Text PDF

Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.

View Article and Find Full Text PDF

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy.

Int J Biol Macromol

January 2025

Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.

View Article and Find Full Text PDF

A novel directly compressible co-processed excipient, based-on rice starch for extended-release of tablets.

Eur J Pharm Biopharm

January 2025

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!