The GINS (Go, Ichi, Nii, and San) complex contains four protein subunits (PSF1, PSF2, PSF3, and SLD5) and has been identified as a factor essential for the initiation and elongation stages of the DNA replication process. A previous study indicated that PSF2 participated in the developing central nervous system (CNS) of Xenopus laevis. However, the expression and function of GINS members in the mammalian developing nervous system remains unclear. Here, we examined the expression of GINS members in mice during nervous system development via immunofluorescence staining. At the beginning of neural development, PSF1 and SLD5 were highly expressed in neuroepithelial stem cells (NSCs) of the inner surface of neural tube (NT) and overlapped with proliferation marker Ki67. After entering the mid- and late-phase of neural development, PSF1 and SLD5 changed their regions of expression. These genes were highly expressed in dorsal root ganglion (DRG) progenitors, but they showed no overlap with Ki67 positive cells. Instead, a reduction of SLD5 expression promoted neuronal differentiation and maturation in the late-phase. PSF2 and PSF3 showed no tissue-specificity. PSF2 was constitutively and highly expressed whereas PSF3 was expressed at very low levels during neural development. In this study, we demonstrated variations in proteins and expression regions of the GINS members during mammalian CNS development and revealed a correlation between GINS expression and cell proliferation. Furthermore, we have suggested a novel function of GINS member SLD5, which regulates the differentiation of neural stem/progenitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2019.104465 | DOI Listing |
Zhongguo Fei Ai Za Zhi
October 2024
Medical Laboratory Center, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi 830011, China.
bioRxiv
September 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK.
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2024
Structural Biology Laboratory, Elettra Sincrotrone Trieste S.c.p.A., 34149, Trieste, Italy; Department of Environmental and Biological Sciences, University of Nova Gorica, SI-5000, Nova Gorica, Slovenia. Electronic address:
RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA.
View Article and Find Full Text PDFFront Vet Sci
November 2023
Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia.
This study aimed to assess Australian veterinarians' knowledge, perceptions and treatment strategies for worm control in horses with an online questionnaire. The questionnaire comprised 64 questions covering various aspects of: (i) veterinary practice; (ii) the veterinarian's knowledge of gastrointestinal nematodes (GINs) and the importance of parasites in different age groups of horses; (iii) the diagnosis and control of worms; (iv) anthelmintics and anthelmintic resistance (AR); (v) grazing management; and (vi) the means of communication and the discussion between veterinarians and their clients regarding worm control. Following a pilot survey, a link for the questionnaire survey was sent to all ( = 1,148) registered members of Equine Veterinarians Australia in April 2020.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2022
Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China.
Partner of Sld5-1(Psf1) is a member of Gins complex, which was discovered in 2003. It consists of the predominantly α-helical A-domain and the massively β-stranded B-domain. Some researches indicate that Psf1 plays a prominent part in DNA replication through cell cycle regulation, and plays a key role in early embryo development and tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!