PAQR3 regulates phosphorylation of FoxO1 in insulin-resistant HepG2 cells via NF-κB signaling pathway.

Exp Cell Res

Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China. Electronic address:

Published: August 2019

AI Article Synopsis

  • Insulin resistance is key to type 2 diabetes and is influenced by the NF-κB signaling pathway, which affects glucose and lipid metabolism.
  • PAQR3 inhibits the PI3K/Akt pathway affecting FoxO1, while also promoting inflammatory fibrosis in diabetic kidneys via NF-κB.
  • The study investigates how PAQR3 impacts FoxO1 phosphorylation and related metabolism in insulin-resistant liver cells through the NF-κB pathway, showing that PAQR3 decreases FoxO1 phosphorylation and alters metabolic protein expressions.

Article Abstract

Insulin resistance is a significant feature of type 2 diabetes mellitus and glucose and lipid metabolism disorders. Activation of NF-κB signaling pathway plays an important role in the formation of insulin resistance. FoxO1 plays a major role in regulating glucose and lipid metabolism, as well as insulin signaling pathway. Previous studies have shown that Progestin and AdipoQ Receptor 3 (PAQR3) suppresses the activity of PI3K/Akt, which is an upstream pathway of FoxO1, and additionally promotes the pathological process of diabetic renal inflammatory fibrosis via activating NF-κB pathway. On this basis, it has caused us great concern whether NF-κB is involved in PAQR3 regulation of FoxO1 under insulin resistance. In this study, we aimed to investigate whether PAQR3 regulates phosphorylation of FoxO1 via NF-κB pathway in palmitic acid (PA)-induced insulin-resistant HepG2 cells, thereby causing glucose and lipid metabolism disorders. We found that PA stimulation and PAQR3 overexpression decreased the phosphorylation of FoxO1 and the expressions of glucokinase (GCK) and low density lipoprotein receptor (LDLR), in addition, promoted the nuclear accumulation of NF-κB. Inhibition of NF-κB pathway increased the phosphorylation of FoxO1 and the expressions of GCK and LDLR which were downregulated by PA stimulation and PAQR3 overexpression. Taken together, in PA-induced insulin-resistant HepG2 cells, PAQR3 might regulate the phosphorylation of FoxO1 and the expressions of GCK and LDLR through NF-κB pathway, thereby regulating the glucose and lipid metabolism disorders induced by insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.04.031DOI Listing

Publication Analysis

Top Keywords

phosphorylation foxo1
20
insulin resistance
16
glucose lipid
16
lipid metabolism
16
nf-κb pathway
16
insulin-resistant hepg2
12
hepg2 cells
12
signaling pathway
12
metabolism disorders
12
foxo1 expressions
12

Similar Publications

FOXO1 pathway activation by VISTA immune checkpoint restrains pulmonary ILC2 functions.

J Clin Invest

January 2025

Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, United States of America.

Type-2 innate lymphoid cells (ILC2s) play a pivotal role in the development of airway hyperreactivity (AHR). However, the regulatory mechanisms governing ILC2 function remain inadequately explored. This study uncovers V-domain Ig suppressor of T cell activation (VISTA) as an inhibitory immune checkpoint crucial for modulating ILC2-driven lung inflammation.

View Article and Find Full Text PDF

Background: UpToDate, no drugs have been approved to treat nonalcoholic steatohepatitis, the advanced stage of the most prevalent liver disease, non-alcoholic fatty liver disease. The present study was conducted to explore the potential influences of L-carnitine on the pathomechanisms of hepatic injury that mediate progression to non-alcoholic steatohepatitis in dexamethasone-toxified rats.

Methods: Male Wistar rats were allocated as follows: dexamethasone group, rats received dexamethasone (8 mg/kg/day, intraperitoneally) for 6 days; DEXA-LCAR300, DEXA-LCAR500, and DEXA-MET groups, rats administered L-carnitine (300 or 500 mg/kg/day, IP) or metformin (500 mg/kg/day, orally) one week prior to dexamethasone injection (8 mg/kg/day, IP) and other six days alongside dexamethasone administration.

View Article and Find Full Text PDF

Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.

Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .

Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation.

View Article and Find Full Text PDF

In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3--β--galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!