Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Harvesting non-emissive spin-triplet charge-transfer (CT) excitons of organic semiconductors is fundamentally important for increasing the operation efficiency of future devices. Here we observe thermally activated delayed fluorescence (TADF) in a 1:2 CT cocrystal of trans-1,2-diphenylethylene (TSB) and 1,2,4,5-tetracyanobenzene (TCNB). This cocrystal system is characterized by absorption spectroscopy, variable-temperature steady-state and time-resolved photoluminescence spectroscopy, single-crystal X-ray diffraction, and first-principles calculations. These data reveal that intermolecular CT in cocrystal narrows the singlet-triplet energy gap and therefore facilitates reverse intersystem crossing (RISC) for TADF. These findings open up a new way for the future design and development of novel TADF materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201904427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!