Assessing Possible Mechanisms of Micrometer-Scale Electron Transfer in Heme-Free Geobacter sulfurreducens Pili.

J Phys Chem B

Department of Chemistry , Duke University, Durham , North Carolina 27708 , United States.

Published: June 2019

The electrically conductive pili of Geobacter sulfurreducens are of both fundamental and practical interest. They facilitate extracellular and interspecies electron transfer (ET) and also provide an electrical interface between living and nonliving systems. We examine the possible mechanisms of G. sulfurreducens electron transfer in regimes ranging from incoherent to coherent transport. For plausible ET parameters, electron transfer in G. sulfurreducens bacterial nanowires mediated only by the protein is predicted to be dominated by incoherent hopping between phenylalanine (Phe) and tyrosine (Tyr) residues that are 3 to 4 Å apart, where Phe residues in the hopping pathways may create delocalized "islands." This mechanism could be accessible in the presence of strong oxidants that are capable of oxidizing Phe and Tyr residues. We also examine the physical requirements needed to sustain biological respiration via nanowires. We find that the hopping regimes with ET rates on the order of 10 s between Phe islands and Tyr residues, and conductivities on the order of mS/cm, can support ET fluxes that are compatible with cellular respiration rates, although sustaining this delocalization in the heterogeneous protein environment may be challenging. Computed values of fully coherent electron fluxes through the pili are orders of magnitude too low to support microbial respiration. We suggest experimental probes of the transport mechanism based on mutant studies to examine the roles of aromatic amino acids and yet to be identified redox cofactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613197PMC
http://dx.doi.org/10.1021/acs.jpcb.9b01086DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
tyr residues
12
geobacter sulfurreducens
8
electron
5
assessing mechanisms
4
mechanisms micrometer-scale
4
micrometer-scale electron
4
transfer
4
transfer heme-free
4
heme-free geobacter
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Two-in-one strategy to enhance the stability of TiCT in transition metal ion solutions.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!