Incubation of washed human sperm with [3H]- or [14C]arachidonic acid allowed a major incorporation of the label into phospholipids, provided that the final concentration of the fatty acid did not exceed 20 microM. A further challenge with calcium ionophore A23187 of spermatozoa suspended in a calcium-containing medium led to phospholipid hydrolysis, which could account for 10-12% of total cell radioactivity. Degradation products were identified as free, unconverted arachidonic acid, occurring with some diacylglycerol. Phospholipid hydrolysis was significant after 15 min of incubation and became maximal after 120 min. It was found to be calcium dependent, diacylglycerol and free arachidonate production occurring maximally at 2 mM and 5 mM CaCl2, respectively. Phosphatidylcholine and phosphatidylinositol were the most significantly degraded phospholipids after 60 min of incubation. Similar incubations conducted with 32P-labeled sperm confirmed the selective hydrolysis of phosphatidylcholine and revealed an increase production of phosphatidic acid probably due to a phosphorylation of diacylglycerol. Under the same conditions, one third of the cells remained motile and electron microscopy revealed that acrosome reaction was completed in 40% of the cells and displayed an intermediary state in 40-50% of the spermatozoa. Furthermore, a good parallelism was observed between the extent of the acrosome reaction and the extent of phospholipid hydrolysis promoted by increasing concentrations of A23187. It is concluded that calcium entry into the cells activates both a phospholipase A2 and a phospholipase C, leading to the production of substances, like lysophospholipid, diacylglycerol or phosphatidic acid, which may or may not be involved in acrosome reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2760(87)90265-7 | DOI Listing |
Sci Rep
January 2025
Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Poor male fertility significantly affects dairy production, primarily due to low conception rates (CR) in bulls, even when cows are inseminated with morphologically normal sperm. Seminal plasma is a key factor in evaluating the fertilizing ability of bull semen. The extracellular vesicles (EVs) in seminal plasma contain fertility-associated proteins like SPAM1, ADAM7, and SP10, which influence sperm function and fertilizing potential.
View Article and Find Full Text PDFAnim Reprod
January 2025
Genetics and Physiology Division, Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan, Taiwan.
Ensuring boar sperm quality before insemination is crucial for maximizing field fertility and efficient pig production. The computer-assisted sperm analysis (CASA) and fluorescence probes combined with flow cytometry (FC) are commonly used techniques for evaluating sperm kinematics and functions, closely related to animal fertility. However, their high cost and complex operations make it challenging to apply them in laboratories or pig breeding farms with limited resources.
View Article and Find Full Text PDFJ Reprod Dev
January 2025
Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan.
The neurotransmitter, 5-hydroxytriptamine (5-HT), is well known. Furthermore, it enhances the acrosome reaction, hyperactivation, and in vitro fertilization (IVF) success in hamsters and mice. In the present study, we examined whether 5-HT enhances hyperactivation and increases IVF success in rats.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFReprod Toxicol
January 2025
Department of Urology, University of Florida, Gainesville, FL 32610, USA.
This study explores the effects of calcium channel blockers (CCBs) on sperm function, a critical aspect of male fertility. Male infertility, responsible for 30-50% of infertility cases, often involves issues with sperm motility and capacitation, both of which are heavily influenced by calcium ions and specific ion channels like CatSper and voltage-dependent calcium channels (VDCCs). CCBs, which are commonly prescribed for cardiovascular conditions, inhibit these calcium channels, potentially disrupting sperm function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!