Context: Floss bands are a popular intervention used by sports medicine professionals to enhance myofascial function and mobility. The bands are often wrapped around a region of the body in an overlapping fashion (eg, 50%) and then tensioned by stretching the band to a desired length (eg, 50%). To date, no research has investigated the stretch force of the bands at different elongation lengths.

Objective: The purpose of this clinical study was to quantify the Rockfloss® band stretch force at 6 different elongation lengths (ie, 25%-150%) for the 5.08- and 10.16-cm width bands.

Design: Controlled laboratory study.

Setting: University kinesiology laboratory.

Participants: One trained researcher conducted all measurements.

Procedures: The stretch force of a floss band was measured at 6 different elongation lengths with a force gauge.

Main Outcome Measures: Band tension force at different band elongation lengths.

Results: The stretch force values for the 5.08-cm width (2 in) were as follows: 25% = 13.53 (0.25) N, 50% = 24.57 (0.28) N, 75% = 36.18 (0.39) N, 100% = 45.89 (0.62) N, 125% = 54.68 (0.26) N, and 150% = 62.54 (0.40) N. The stretch force values for the 10.16-cm width (4 in) were as follows: 25% = 16.70 (0.35) N, 50% = 31.90 (0.52) N, 75% = 47.45 (0.44) N, 100% = 57.75 (0.24) N, 125% = 69.02 (0.28) N, and 150% = 81.10 (0.67) N. Both bandwidths demonstrated a linear increase in stretch force as the bands became longer.

Conclusion: These values may help professionals to understand and document the tension force being applied at different lengths to produce a more beneficial application during treatment. Future research should determine how the different length/tensions effect the local myofascia, arterial, and vascular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1123/jsr.2019-0034DOI Listing

Publication Analysis

Top Keywords

stretch force
28
elongation lengths
12
force
10
floss band
8
band stretch
8
force elongation
8
force bands
8
1016-cm width
8
tension force
8
force values
8

Similar Publications

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Design of Dielectric Elastomer Actuator and Its Application in Flexible Gripper.

Micromachines (Basel)

January 2025

Zhejiang Sunny Optical Company, Yuyao 315400, China.

Dielectric elastomer actuators (DEAs) are difficult to apply to flexible grippers due to their small deformation range and low output force. Hence, a DEA with a large bending deformation range and output force was designed, and a corresponding flexible gripper was developed to realize the function of grasping objects of different shapes. The relationship between the pre-stretch ratio and DEA deformation degree was tested by experiments.

View Article and Find Full Text PDF

Introduction: The introduction of fifth-generation fighter aircraft has raised concerns regarding the impact of high gravitational forces on lung function. This study aimed to investigate the acute effects of controlled +Gz exposure, up to +9 Gz, on lung function in military pilots using impulse oscillometry (IOS).

Methods: These studies, conducted in Canada and the Netherlands, involved military pilots undergoing high G centrifuge training.

View Article and Find Full Text PDF

Multirotor drones are widely used in fields such as environmental monitoring, agricultural inspection, and package delivery, but they still face numerous challenges in durability and aerial operation capabilities. To address these issues, this paper presents a biomimetic leg-claw mechanism (LCM) inspired by the biomechanics of birds. The claw of the LCM adopts a bistable gripper design that can rapidly close through external impact or actively close via the coordination of internal mechanisms.

View Article and Find Full Text PDF

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!