A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tunable Dual Temperature-Pressure Sensing and Parameter Self-Separating Based on Ionic Hydrogel via Multisynergistic Network Design. | LitMetric

Hydrogel-based wearable sensors have experienced an explosive development, whereas functional integration to mimic the multisignal responsiveness of skin especially for pressure and temperature remained a challenge. Herein, a functional ionic hydrogel-base flexible sensor was successfully prepared by integrating the thermal-sensitive N-isopropylacrylamide (NIPAAm) into another conductive double-network hydrogel based on polyvinyl alcohol-graphene oxide (PVA-GO) and polyacrylic acid-Fe (PAA-Fe). Because of the multisynergistic network design, the triple-network hydrogel was endowed with excellent conductivity (∼170 Ω/mm), mechanical tolerance (1.1 MPa), and rapid recoverability (within 0.5 s), which demonstrated the potential use in pressure monitoring. Moreover, the introduction of a thermal-sensitive network allowed it to capture the changes in the human body temperature accurately simultaneously and to be further developed as a flexible temperature sensor. In particular, the unsynchronization of pressure and temperature strain (straining to stability within 0.5 s and more than 50 s, respectively) caused the two electrical signals to be automatically separated. Intuitive reading of data without involving complex parameter separation calculations allowed the hydrogel to be developed as an integrated dual temperature-pressure-sensitive flexible sensor. In addition, all above properties demonstrated that the as-prepared functional hydrogel could be extended to the practical application in human-machine interactions and personalized multisignal monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b05214DOI Listing

Publication Analysis

Top Keywords

multisynergistic network
8
network design
8
pressure temperature
8
flexible sensor
8
hydrogel
5
tunable dual
4
dual temperature-pressure
4
temperature-pressure sensing
4
sensing parameter
4
parameter self-separating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!