Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Beneficial nematodes are used as biological control agents. Low-cost mass production of entomopathogenic nematodes (EPNs) is an important prerequisite toward their successful commercialization. EPNs can be grown via methods or in sold or liquid fermentation. For solid and liquid approaches, media optimization is paramount to maximizing EPN yield and quality. In solid media, the authors investigated the effects of incorporating pulverized insect powder from larvae of three insects (, and ) at three dose levels (1, 3, and 5%). The impact of insect powder was assessed on infective juvenile (IJ) yield in solid media. Additionally, IJs produced in solid culture were subsequently assessed for virulence, and progeny production in a target insect, . The dose level of larval powder had a significant effect on IJ yield in both trials, whereas insect type had significant effect on IJ yield in trial 1 but not in trial 2. The maximum solid culture yield was observed in powder at the highest dose in both trials. Moreover, the time-to-death in was substantially shortened in trial 1 and in trial 2 when IJs from the powder treatment were applied. There was no significant effect of combining two insect powders relative to addition of powder from a single insect species. These findings indicate that addition of insect powder to solid media leads to high mass production yields, and the fitness of the IJs produced (e.g., in virulence and reproductive capacity) can be enhanced as well. Beneficial nematodes are used as biological control agents. Low-cost mass production of entomopathogenic nematodes (EPNs) is an important prerequisite toward their successful commercialization. EPNs can be grown via methods or in sold or liquid fermentation. For solid and liquid approaches, media optimization is paramount to maximizing EPN yield and quality. In solid media, the authors investigated the effects of incorporating pulverized insect powder from larvae of three insects (, and ) at three dose levels (1, 3, and 5%). The impact of insect powder was assessed on infective juvenile (IJ) yield in solid media. Additionally, IJs produced in solid culture were subsequently assessed for virulence, and progeny production in a target insect, . The dose level of larval powder had a significant effect on IJ yield in both trials, whereas insect type had significant effect on IJ yield in trial 1 but not in trial 2. The maximum solid culture yield was observed in powder at the highest dose in both trials. Moreover, the time-to-death in was substantially shortened in trial 1 and in trial 2 when IJs from the powder treatment were applied. There was no significant effect of combining two insect powders relative to addition of powder from a single insect species. These findings indicate that addition of insect powder to solid media leads to high mass production yields, and the fitness of the IJs produced (e.g., in virulence and reproductive capacity) can be enhanced as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909343 | PMC |
http://dx.doi.org/10.21307/jofnem-2018-050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!