Selection of high-quality sperm is critical to the success of assisted reproductive technologies. Clinical screening for top sperm has long focused on sperm swimming ability when following boundaries or when fully free of constraints. In this work, we demonstrate a sperm selection approach with parallel 2 μm tall confined selection channels that prohibit rotation of the sperm head and require planar swimming. We demonstrate that a planar swimming subpopulation of sperm capable of entering and navigating these channels has DNA integrity superior to the freely-swimming motile or raw sperm populations over a wide range of semen sample qualities. The DNA integrity of the selected sperm was significantly higher than that of the corresponding raw samples for donor samples and clinical patient samples, respectively. In side-by-side testing, this method outperforms current clinical selection methods, density gradient centrifugation and swim-up, as well as sperm selected via general motility. Planar swimming represents a viable sperm selection mechanism with the potential to improve outcomes for couples and offspring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9lc00209j | DOI Listing |
Biomimetics (Basel)
September 2024
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China.
This paper presents an adaptive line-of-sight (LOS) guidance method, incorporating a finite-time sideslip angle observer to achieve precise planar path tracking of a bionic robotic fish driven by LOS. First, an adaptive LOS guidance method based on real-time cross-track error is presented. To mitigate the adverse effects of the sideslip angle on tracking performance, a finite-time observer (FTO) based on finite-time convergence theory is employed to observe the time-varying sideslip angle and correct the target yaw.
View Article and Find Full Text PDFCells
August 2024
Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France.
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish.
View Article and Find Full Text PDFBull Math Biol
August 2024
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
We study the stochastic hydrodynamics of colonies of flagellated swimming cells, typified by multicellular choanoflagellates, which can form both rosette and chainlike shapes. The objective is to link cell-scale dynamics to colony-scale dynamics for various colonial morphologies. Via autoregressive stochastic models for the cycle-averaged flagellar force dynamics and statistical models for demographic cell-to-cell variability in flagellar properties and placement, we derive effective transport properties of the colonies, including cell-to-cell variability.
View Article and Find Full Text PDFPhys Rev E
July 2024
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Purcell's planar three-link microswimmer is a classic model of swimming in low-Reynolds-number fluid, inspired by motion of flagellated microorganisms. Many works analyzed this model, assuming that the two joint angles are directly prescribed in phase-shifted periodic inputs. In this work, we study a more realistic scenario by considering an extension of this model which accounts for joints' elasticity and mechanical actuation of periodic torques so that the joint angles are dynamically evolving.
View Article and Find Full Text PDFFront Robot AI
June 2024
Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
Electrohydraulic soft actuators are a promising soft actuation technology for constructing bio-inspired underwater robots owing to the features of this technology such as large deformations and forces, fast responses, and high electromechanical efficiencies. However, this actuation technology requires high voltages, thereby limiting the use of these actuators in water and hindering the development of underwater robots. This paper describes a method for creating bio-inspired underwater robots using silicone-layered electrohydraulic soft actuators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!