An energy-resolved atomic scanning probe.

New J Phys

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899.

Published: January 2018

We propose a method to probe the local density of states (LDOS) of atomic systems that provides both spatial and energy resolution. The method combines atomic and tunneling techniques to supply a simple, yet quantitative and operational, definition of the LDOS for both interacting and non-interacting systems: It is the rate at which particles can be siphoned from the system of interest by a narrow energy band of non-interacting states contacted locally to the many-body system of interest. Ultracold atoms in optical lattices are a natural platform for implementing this broad concept to visualize the energy and spatial dependence of the atom density in interacting, inhomogeneous lattices. This includes models of strongly correlated condensed matter systems, as well as ones with non-trivial topologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512978PMC
http://dx.doi.org/10.1088/1367-2630/aaedcfDOI Listing

Publication Analysis

Top Keywords

system interest
8
energy-resolved atomic
4
atomic scanning
4
scanning probe
4
probe propose
4
propose method
4
method probe
4
probe local
4
local density
4
density states
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!