Immune checkpoint blockade (ICB) immunotherapy induces potent antitumor immunity across multiple solid tumors, although few patients respond well to this therapy. An emerging biomarker for predicting responsiveness to ICB immunotherapy is tumor mutational burden (TMB). Although several surrogate biomarkers, including deficient mismatch repair, TP53/KRAS mutations, and comutations in DNA damage response pathways, have been shown to be effective for predicting the response to checkpoint blockade immunotherapy, each is positive for only a small cohort of candidates, and many potential responders to ICB are inevitably missed. Here, we found that titin (TTN), which is frequently detected in solid tumors, is associated with increased TMB and correlated with objective response to ICB. In 7 public clinical cohorts, all patients with mutated TTN showed longer progression-free survival or overall survival than those with wild-type status. Furthermore, an improved objective response rate and higher TMB were identified in cohorts with accessible information. Identification of TTN mutation as a predictor of improved outcomes in response to ICBs provides a clinically feasible assessment for estimating TMB and ICB therapy outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542599PMC
http://dx.doi.org/10.1172/jci.insight.127901DOI Listing

Publication Analysis

Top Keywords

solid tumors
12
checkpoint blockade
8
icb immunotherapy
8
objective response
8
icb
5
response
5
titin mutation
4
mutation associated
4
associated responsiveness
4
responsiveness checkpoint
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!