Detecting middle ear fluid using smartphones.

Sci Transl Med

Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA.

Published: May 2019

The presence of middle ear fluid is a key diagnostic marker for two of the most common pediatric ear diseases: acute otitis media and otitis media with effusion. We present an accessible solution that uses speakers and microphones within existing smartphones to detect middle ear fluid by assessing eardrum mobility. We conducted a clinical study on 98 patient ears at a pediatric surgical center. Using leave-one-out cross-validation to estimate performance on unseen data, we obtained an area under the curve (AUC) of 0.898 for the smartphone-based machine learning algorithm. In comparison, commercial acoustic reflectometry, which requires custom hardware, achieved an AUC of 0.776. Furthermore, we achieved 85% sensitivity and 82% specificity, comparable to published performance measures for tympanometry and pneumatic otoscopy. Similar results were obtained when testing across multiple smartphone platforms. Parents of pediatric patients ( = 25 ears) demonstrated similar performance to trained clinicians when using the smartphone-based system. These results demonstrate the potential for a smartphone to be a low-barrier and effective screening tool for detecting the presence of middle ear fluid.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aav1102DOI Listing

Publication Analysis

Top Keywords

middle ear
16
ear fluid
16
presence middle
8
otitis media
8
ear
5
detecting middle
4
fluid
4
fluid smartphones
4
smartphones presence
4
fluid key
4

Similar Publications

Approach to the Patient with Achondroplasia - New Considerations for Diagnosis, Management and Treatment.

J Clin Endocrinol Metab

January 2025

Division of Orthogenetics, Department of Pediatrics, Nemours Children's Hospital, Delaware, 1600 Rockland Road, Wilmington, DE, 19803, USA.

Achondroplasia is the most common disproportionate short-stature skeletal dysplasia. Features associated with achondroplasia are rhizomelia, macrocephaly, midface hypoplasia, and typical cognition. Potential medical complications include foramen magnum stenosis, hydrocephalus, middle ear dysfunction, obstructive and central sleep apnea, spinal stenosis and genu varum.

View Article and Find Full Text PDF

Background: Idiopathic intracranial hypertension (IIH) is increasingly prevalent, yet longitudinal outcome data are scarce. This study aimed to characterise demographic and longitudinal clinical changes in a cohort of patients with IIH.

Methods: Retrospective cohort analysis on adult patients diagnosed with IIH (Friedman criteria) enrolled in the neuro-ophthalmology database (NODE) across two tertiary centres.

View Article and Find Full Text PDF

<b>Introduction:</b> In the course of middle ear diseases, a disturbed influence of the system transmitting sound through the middle ear on the function of the inner ear is observed. The audiometric consequence of the disease process taking place in the middle ear is the shift in bone conduction (BC) thresholds, which is called pseudoperceptive hearing loss (the so-called Carhart effect). The natural process of aging of the hearing system (age-related hearing loss) means that the manifestation of the Carhart effect varies in different age groups.

View Article and Find Full Text PDF

This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.

View Article and Find Full Text PDF

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!