In single cortical collecting tubules (CCT) of the rabbit, guanosine 5'-triphosphate (GTP) increased the arginine vasopressin (AVP)-stimulated adenylate cyclase (AC) by 60% (P less than 0.05). In contrast, guanosine 5' O-(2-thio)-diphosphate (GDP-beta S), a competitive inhibitor of GTP action on the stimulatory guanine regulatory protein (Ns), reduced the AVP-stimulated AC activity by 72% (P less than 0.001), indicating the presence of endogenous GTP in the cells under study. That inhibitory effect was reversed by the addition of GTP to the incubation medium. In isolated perfused CCT, cholera toxin (CT) induced a significant increase in water permeability in the absence of AVP. In contrast, Bordetella pertussis toxin (BPT) did not modify the low AVP-independent water permeability. Lithium, an inhibitor of the hydrosmotic action of AVP, also inhibits the hydrosmotic action of CT by 70% (P less than 0.05) but not that of forskolin. The conclusions of the present study are Ns is required for AVP stimulation of AC in the CCT; Ns is functionally active in this system as evidenced by the hydrosmotic effect of CT; the lack of effect of BPT suggests that the low AVP-independent water permeability in the CCT is not the result of a tonic inhibition of the AC operating through the inhibitory guanine nucleotide regulatory protein; and the inhibition by lithium of the hydrosmotic action of AVP in the CCT appears to involve an interaction with the regulatory proteins (probably Ns) or with their binding to the catalytic unit of AC.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1987.252.6.F1080DOI Listing

Publication Analysis

Top Keywords

water permeability
12
hydrosmotic action
12
cortical collecting
8
regulatory protein
8
low avp-independent
8
avp-independent water
8
action avp
8
cct
5
mechanisms lithium-vasopressin
4
lithium-vasopressin interaction
4

Similar Publications

In the present investigation, the formulation and thorough assessment of biodegradable composite films were conducted, utilizing pectin extracted from banana peel in conjunction with synthesized silver zeolite nanoparticles. The evaluation of physical properties, microstructural investigation, mechanical characteristics, and barrier properties was done providing valuable insights into various attributes of the film. The amalgamation of silver zeolite nanoparticles with the extracted pectin from banana peel results in biodegradable composite films exhibiting distinct physical, mechanical, barrier, and thermal properties.

View Article and Find Full Text PDF

Environmental concerns stemming from the widespread use of polyethylene packaging and the perishability of fresh products have promoted the development of antimicrobial biodegradable packaging films in preservation of vegetables. In this study, antimicrobial films based on chitosan (CS)-nisin (Ni)-nanocrystalline cellulose (NCC) were characterized, and its preservation effect applied to baby cabbage was investigated. The results suggest that 1 % CS-0.

View Article and Find Full Text PDF

Purpose: Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (K) across the blood brain barrier (BBB). This study aims to further evaluate K MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB.

Methods: DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13).

View Article and Find Full Text PDF

Purpose: This study aims to assess whether water exchange rate (k), a surrogate for blood-brain barrier (BBB) permeability, is associated with functional outcomes in patients with acute ischemic stroke (AIS).

Methods: We studied 22 AIS patients enrolled from 1/2022 to 4/2024 who underwent multi-modal non-contrast imaging on a 3.0-Tesla scanner, including DP-pCASL, DTI, NODDI and MAP imaging.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!