Hydration of diblock copolymer micelles: Effects of hydrophobicity and co-solvent.

J Chem Phys

Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA.

Published: May 2019

Diblock polymer micelles dispersed in an aqueous environment are being actively investigated for various applications, but there is only a qualitative understanding of the effect of the chemical structure on the micelle hydration and water dynamics as these properties are difficult to assess experimentally. Using all-atom molecular dynamics simulations, we investigate aqueous solutions of three comparable in size diblock copolymer micelles with core-forming blocks of different hydrophobicity: polybutadiene (PB), polycaprolactone (PCL), and polytetrahydrofuran (pTHF) with the same hydrophilic block, polyethylene oxide (PEO). We found that core-block hydrophobicity and ability to form hydrogen bonds with water strongly affect the water dynamics near the core: water molecules spend considerably less time in contact with the PB block than with PCL and pTHF blocks. We obtained polymer and solvent volume fraction profiles and determined that the interfacial width systematically increases with a decrease of core block hydrophobicity with water penetration into the core being negligible for PB-PEO and PCL-PEO micelles, while for pTHF-PEO micelles the interface is more diffuse and there is a noticeable penetration of water (17% by volume). For PCL-PEO micelles, which are commonly used in biomedical applications, we also investigated tetrahydrofuran (THF) penetration into the micelles from mixed THF:water solution at early stages of micelle dissolution. We found an inhomogeneous solvent distribution with a maximum of THF volume fraction in the interfacial core-corona region and partial exclusion from the PEO corona, which slows down micelle dissolution. These results can have important implications for micelle stability and use in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5089251DOI Listing

Publication Analysis

Top Keywords

diblock copolymer
8
copolymer micelles
8
water dynamics
8
volume fraction
8
pcl-peo micelles
8
biomedical applications
8
micelle dissolution
8
micelles
7
water
6
hydration diblock
4

Similar Publications

Acid-Enhanced Photoiniferter Polymerization under Visible Light.

Angew Chem Int Ed Engl

December 2024

ETH Zurich, Materials, Vladimir-​Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND.

Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT)  polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.

View Article and Find Full Text PDF

The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.

View Article and Find Full Text PDF

Stabilizing complex-Langevin field-theoretic simulations for block copolymer melts.

J Chem Phys

December 2024

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Complex-Langevin field-theoretic simulations (CL-FTSs) provide an approximation-free method of calculating fluctuation corrections to the self-consistent field theory (SCFT) of block copolymer melts. However, the complex fields are prone to the formation of hot spots, which causes the method to fail. This problem has been attributed to an invariance under complex translations, which allows the system to drift away from the real-valued saddle-point of SCFT.

View Article and Find Full Text PDF

Preserving positivity in density-explicit field-theoretic simulations.

J Chem Phys

December 2024

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.

Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard-Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard-Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials.

View Article and Find Full Text PDF

Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!