A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic basis-set adaptation in projection-based embedding. | LitMetric

Automatic basis-set adaptation in projection-based embedding.

J Chem Phys

Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.

Published: May 2019

Projection-based embedding (PbE) is an exact embedding method within density-functional theory (DFT) that has received increasing attention in recent years. Several different variants have been described in the literature, but no systematic comparison has been presented so far. The truncation of the basis is critical for the efficiency of this class of approaches. Here, we employ a basis-set truncation scheme previously used for level-shift embedding in a top-down fashion, and we present an own basis-set extension scheme for bottom-up type PbE. We compare its accuracy for the level-shift technique [Manby et al., J. Chem. Theory Comput. 8, 2564-2568 (2012)] and an empirically corrected variant, the external-orthogonality approach by Khait and Hoffmann [Annu. Rep. Comput. Chem. 8, 53-70 (2012)] and the approach based on the Huzinaga equation transferred to the DFT context [Hégely et al., J. Chem. Phys. 145, 064107 (2016)]. Concerning the reproduction in total energies, we show that the Huzinaga method yields the most stable results concerning a basis-set truncation in top-down embedding. For the practically more relevant calculation of energy differences, the efficient level-shift technique yields very promising results due to error cancellation. In bottom-up embedding, we observe convergence issues in cases where constraints in the Lagrange formalism cannot be fulfilled due to basis-set incompleteness.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5084550DOI Listing

Publication Analysis

Top Keywords

projection-based embedding
8
basis-set truncation
8
level-shift technique
8
embedding
6
automatic basis-set
4
basis-set adaptation
4
adaptation projection-based
4
embedding projection-based
4
embedding pbe
4
pbe exact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!