Background: Although prenatal and postnatal programming of metabolic diseases in adulthood is well established, the mechanisms underpinning metabolic programming are not. Dlk1, a key regulator of fetal development, inhibits adipocyte differentiation and restricts fetal growth.

Methods: Assess DLk1 expression in a Wistar rat model of catch-up growth following intrauterine restriction. Dams fed ad libitum delivered control pups (C) and dams on a 50% calorie-restricted diet delivered pups with low birth weight (R). Restricted offspring fed a standard rat chow showed catch-up growth (R/C) but those kept on a calorie-restricted diet did not (R/R).

Results: Decreased Dlk1 expression was observed in adipose tissue and skeletal muscle of R/C pups along with excessive visceral fat accumulation, decreased circulating adiponectin, increased triglycerides and HOMA-IR (from p < 0.05 to p < 0.0001). Moreover, in R/C pups the reduced Dlk1 expression in adipose tissue and skeletal muscle correlated with visceral fat (r = -0.820, p < 00001) and HOMA-IR (r = -0.745, p = 0.002).

Conclusions: Decreased Dlk1 expression relates to visceral fat expansion and insulin resistance in a rat model of catch-up growth following prenatal growth restriction. Modulation of Dlk1 expression could be among the targets for the early prevention of fetal programming of adult metabolic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-019-0428-2DOI Listing

Publication Analysis

Top Keywords

dlk1 expression
12
catch-up growth
12
visceral fat
8
calorie-restricted diet
8
dlk1
4
expression relates
4
relates visceral
4
fat expansion
4
expansion insulin
4
insulin resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!