A Single-Cell Model for Synaptic Transmission and Plasticity in Human iPSC-Derived Neurons.

Cell Rep

Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. Electronic address:

Published: May 2019

Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.04.058DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
12
synaptic
8
transmission plasticity
8
synaptic dysfunction
8
human neurons
8
human
5
neurons
5
single-cell model
4
model synaptic
4
plasticity human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!