Over the last decade, a rich variety of massively parallel assays have revolutionized our understanding of how biological sequences encode quantitative molecular phenotypes. These assays include deep mutational scanning, high-throughput SELEX, and massively parallel reporter assays. Here, we review these experimental methods and how the data they produce can be used to quantitatively model sequence-function relationships. In doing so, we touch on a diverse range of topics, including the identification of clinically relevant genomic variants, the modeling of transcription factor binding to DNA, the functional and evolutionary landscapes of proteins, and -regulatory mechanisms in both transcription and mRNA splicing. We further describe a unified conceptual framework and a core set of mathematical modeling strategies that studies in these diverse areas can make use of. Finally, we highlight key aspects of experimental design and mathematical modeling that are important for the results of such studies to be interpretable and reproducible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-genom-083118-014845 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!