Previous studies on athletes' cognitive functions have reported superior performance on tasks measuring attention and sensorimotor abilities. However, how types of sports training shapes cognitive profile remains to be further explored. In this study, we recruited elite athletes specialized in badminton (N = 35, female = 12) and volleyball (N = 29, female = 13), as well as healthy adult controls (N = 27, female = 17) who had not receive any regular sports training. All participants completed cognitive assessments on spatial attention, sensory memory, cognitive flexibility, motor inhibition, and the attention networks. The results showed that athletes generally showed superior performance on selective cognitive domains compared to healthy controls. Specifically, compared to the healthy control, volleyball players showed superior on iconic memory, inhibitory control of action, and attentional alerting, whereas badminton players showed advantages on iconic memory and basic processing speed. Overall, volleyball players outperformed badminton players on those tasks require stimulus-driven visual attention and motor inhibition, likely due to different training modalities and characteristics of specialty that involves even more complex cognitive processes. To conclude, our findings suggest cognitive plasticity may drive by sports training in team/individual sports expertise, manifesting cognitive profile in sport expertise with distinct training modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519903PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217056PLOS

Publication Analysis

Top Keywords

motor inhibition
12
sports training
12
sport expertise
8
stimulus-driven visual
8
visual attention
8
attention motor
8
cognitive
8
superior performance
8
cognitive profile
8
compared healthy
8

Similar Publications

Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.

View Article and Find Full Text PDF

Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD).

Methods: PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.

View Article and Find Full Text PDF

Cerebrospinal fluid-contacting neurons (CSF-cNs) exhibit neural stem cell (NSC) properties both in vitro and in vivo, and they may play a critical role in recovery after spinal cord injury (SCI). GABA receptors (GABABRs) are expressed in Pkd2l1 CSF-cNs. However, their role in Pkd2l1 CSF-cNs still needs to be discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!