Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe an algorithm to reduce the cost of auxiliary-field quantum Monte Carlo (AFQMC) calculations for the electronic structure problem. The technique uses a nested low-rank factorization of the electron repulsion integral (ERI). While the cost of conventional AFQMC calculations in Gaussian bases scales as , where N is the size of the basis, we show that ground-state energies can be computed through tensor decomposition with reduced memory requirements and subquartic scaling. The algorithm is applied to hydrogen chains and square grids, water clusters, and hexagonal BN. In all cases, we observe significant memory savings and, for larger systems, reduced, subquartic simulation time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.8b00996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!