The discovery of graphene oxide (GO) has made a profound impact on varied areas of research due to its excellent physicochemical properties. However, surface engineering of these nanostructures holds the key to enhanced surface properties. Here, we introduce surface engineering of reduced GO (rGO) shells by radially grafting Ni-Co layered double hydroxide (LDH) lamella on rGO shells to form Ni-Co LDH@rGO. The morphology of synthesized Ni-Co LDH@rGO mimics dendritic cell-like three-dimensional (3D) hierarchical morphologies. Silica nanospheres form self-sacrificial templates during the reduction of GO shells to form rGO shells during the template-assisted synthesis. The radial growth of LDH lamellae during hydrothermal process on GO shells provides access to a significantly larger number of additional active redox sites and overcompensates the loss of pseudocapacitive charge storage centers during the reduction of GO to form rGO shells. This enables in the synthesis of novel surface-engineered rGO nanoshells, which provide large surface area, enhanced redox sites, high porosity, and easy transport of ions. These synthesized 3D dendritic cell-like morphologies of Ni-Co LDH@rGO show a high capacitance of ∼2640 F g. A flexible hybrid device fabricated using this nanomaterial shows a high energy density of ∼35 Wh kg and a power density of 750 W kg at 1 A g. No appreciable compromise in device performance is observed under bending conditions. This synthesis strategy may be used in the development of functional materials useful for potential applications, including sensors, catalysts, and energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b21265 | DOI Listing |
Nanoscale
November 2024
Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
One-dimensional micro-supercapacitors (1D micro-SCs) have been regarded as an efficient energy storage system to fulfill the ever-growing need for miniaturized electronics. Designing multi-dimensional nanoarchitectures on fibrous microelectrodes is an effective strategy to build a high-performance 1D micro-SC. In this work, Ni,S-doped Cu was firstly prepared on Cu wire as a micro-sized 1D current collector through Cu electrodeposition using a H bubble template and then co-doped with nickel and sulfur.
View Article and Find Full Text PDFAnal Methods
September 2024
Department of Chemistry, Anhui University, Hefei 230601, China.
Carbohydrate antigen 19-9 (CA19-9) is an important marker for pancreatic cancer, ovarian cancer and other tumors, and its rapid and stable detection is the basis for early diagnosis and treatment. In this paper, a label-free electrochemical immunosensor for the sensitive detection of CA19-9 has been developed. First, the synthesis of two novel core-shell bimetallic nanomaterials, namely Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF, was accomplished using the MOF-on-MOF approach.
View Article and Find Full Text PDFNano Lett
September 2024
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, 400044 Chongqing, China.
Pharmaceutics
June 2024
Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties.
View Article and Find Full Text PDFMolecules
May 2024
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
Using silicon/reduced graphene oxide (Si/rGO) composites as lithium-ion battery (LIB) anodes can effectively buffer the volumetric expansion and shrinkage of Si. Herein, we designed and prepared Si/rGO-b with a sandwiched structure, formed by a duple combination of ammonia-modified silicon (m-Si) nanoparticles (NP) with graphene oxide (GO). In the first composite process of m-Si and GO, a core-shell structure of primal Si/rGO-b (p-Si/rGO-b) was formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!