In the present study, the distribution and chemical fractionation of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in PM collected at Sikandarpur in Agra from September 2015 to February 2016 were carried out to evaluate their mobility potential, environmental, and human health risk through inhalation. Sequential extraction procedure was applied to partition the heavy metals into four fractions (soluble and exchangeable fraction (F1); carbonates, oxides, and reducible fraction (F2); bound to organic matter, oxidizable, and sulphidic fraction (F3); and residual fraction (F4)) in PM samples. The metals in each fraction were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Daily PM concentration ranged between 13 and 238 μg m during the study period. For more than 92% of the days, the mass concentrations were greater than the National Ambient Air Quality Standard (NAAQS) set at 60 μg m. The total mass concentration of the eight metals was 3.3 μg m that accounted for 2.5% of the PM mass concentration and followed the order Fe > Zn > Cu > Mn > Pb > Ni > Cd > Cr in dominance. The carcinogenic metals (Cd, Cr, Ni, and Pb) comprised 10% of the total metal determined. Almost all the metals had the highest proportion in the residual fraction (F4) except Ni, which had the highest proportion in the reducible fraction (F2). Chemical fractionation and contamination factor (CF) showed that Pb and Ni are readily mobilized and more bioavailable. Risk assessment code (RAC) showed that Cd, Cu, Mn, Ni, Pb, and Zn had medium environmental risk, while Cr and Fe had low risk. When the bioavailable (F1 + F2) concentrations were applied to calculate non-carcinogenic and carcinogenic risk, the results showed that the value of hazard index (HI) for toxic metals was 1.7 for both children and adults through inhalation. The integrated carcinogenic risk was 1.8 × 10 for children and 7.3 × 10 for adults, with both values being higher than the precautionary criterion (1 × 10). Enrichment factor (EF) calculations showed that Cd, Pb, Zn, and Ni were enriched being contributed by anthropogenic activities carried out in the industrial sectors of the city.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05144-8DOI Listing

Publication Analysis

Top Keywords

chemical fractionation
12
heavy metals
12
metals
8
reducible fraction
8
residual fraction
8
mass concentration
8
highest proportion
8
carcinogenic risk
8
fraction
7
risk
6

Similar Publications

Dissolved Rare Earth Elements (REEs) concentrations have been widely used in geochemical studies due to their systematic changes in the environment, acting as tracers in various natural processes. In addition to the usefulness of naturally controlled chemical REE fractionations used in the ocean, the extraction and measurement procedures of seawater REEs using chelating resin and ICP-MS may also be subject to method-derived analytical fractionations, leading to potential misinterpretations. The bracketing standard and the Lu methods were compared to verify any fractionation or deviation associated with the analytical processes.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.

View Article and Find Full Text PDF

The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.

View Article and Find Full Text PDF

Phases partitioning and occurrence forms of arsenic, chromium, and vanadium in a tidal reach of the Pearl River estuary, South China.

Environ Pollut

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!