The effect of hyperlipidemia on bone graft regeneration of peri-implantal created defects in rabbits.

Int J Implant Dent

Periodontology Department, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey.

Published: May 2019

Aim: It is reported that hyperlipidemia affects quality and density of bone and adversely affects wound healing. The effect of hyperlipidemia on implant osseointegration and peri-implant defect regeneration has not been fully explained. The purpose of this study was to examine the effects of hyperlipidemia on the healing potential of the materials used for peri-implant bone regeneration and implant stability.

Materials And Methods: Twelve male, New Zealand rabbits were used in this study. Half of the rabbits were fed a 2% cholesterol diet for 8 weeks to induce hypercholesterolemia. Peri-implant defects (7 mm diameter) were created in the tibias of rabbits and placed implants (3.3 mm in diameter). This study was conducted as a split-mouth design. Animals were randomly divided into two groups: (1) hypercholesterol+autogenous graft group and hypercholesterol+xenograft group (n = 6), and (2) autogenous graft and xenograft groups as controls (n = 6). At 8 weeks after surgery, the rabbits were euthanized. During implant surgery and at 8 weeks, implant stability was measured with resonance frequency analysis (RFA values). Bone-to-implant contact (BIC) was analyzed via histomorphometric analysis.

Results: Hyperlipidemic groups showed significantly lower BIC values than those of the control groups at 8 weeks (p < 0.05). According to baseline RFA readings, there was no significant difference between control and hyperlipidemic groups (p ˃ 0.05). The hypercholesterol+autogenous graft group had significantly lower RFA readings and BIC values than the hypercholesterol+xenograft group at 8 weeks (p < 0.05).

Conclusion: Within the limitations of this study, it was found that hyperlipidemia may negatively affect the implant stability especially in the autogenous group and also, may decrease peri-implant bone regeneration. However, further studies are necessary to confirm these results more.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517464PMC
http://dx.doi.org/10.1186/s40729-019-0170-xDOI Listing

Publication Analysis

Top Keywords

rabbits
5
hyperlipidemia
4
hyperlipidemia bone
4
bone graft
4
graft regeneration
4
regeneration peri-implantal
4
peri-implantal created
4
created defects
4
defects rabbits
4
rabbits aim
4

Similar Publications

Unlabelled: One of the principles of prevention and non-drug treatment of liver diseases, including hepatitis of various etiologies, is the normalization of the diet, including the use of daily diet foods with physiologically active ingredients, in particular betulin, which helps to reduce metabolic and oxidative processes within liver cells. The aim of the work was to evaluate the in vivo effect of triterpene alcohol betulin Roth isolated from the bark of birch Betula pendula Roth. added to fat-containing products (for example, mayonnaise) on the biochemical parameters of blood and the morphological structure of the liver of rats with initiated acute toxic hepatitis.

View Article and Find Full Text PDF

Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.

View Article and Find Full Text PDF

Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies.

Adv Healthc Mater

January 2025

Inserm UMR_S 1121, CNRS EMR 7003, Université Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, F-67000, France.

Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide.

View Article and Find Full Text PDF

Genetically modified chickens as bioreactors for protein-based drugs.

Front Genome Ed

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors.

View Article and Find Full Text PDF

Introduction: /GI.1 and GI.2 cause severe Rabbit Haemorrhagic Disease, and immune processes are among the important pathomechanisms of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!