Evaluation of a new Windkessel model based pulse contour method (WKflow) to calculate stroke volume in patients undergoing intra-aortic balloon pumping (IABP). Preload changes were induced by vena cava occlusions (VCO) in twelve patients undergoing cardiac surgery to vary stroke volume (SV), which was measured by left ventricular conductance volume method (SVlv) and WKflow (SVwf). Twelve VCO series were carried out during IABP assist at a 1:2 ratio and seven VCO series were performed with IABP switched off. Additionally, SVwf was evaluated during nine episodes of severe arrhythmia. VCO's produced marked changes in SV over 10-20 beats. 198 paired data sets of SVlv and SVwf were obtained. Bland-Altman analysis for the difference between SVlv and SVwf during IABP in 1:2 mode showed a bias (accuracy) of 1.04 ± 3.99 ml, precision 10.9% and limits of agreement (LOA) of - 6.94 to 9.02 ml. Without IABP bias was 0.48 ± 4.36 ml, precision 11.6% and LOA of - 8.24 to 9.20 ml. After one thermodilution calibration of SVwf per patient, during IABP the accuracy improved to 0.14 ± 3.07 ml, precision to 8.3% and LOA to - 6.00 to + 6.28 ml. Without IABP the accuracy improved to 0.01 ± 2.71 ml, precision to 7.5% and LOA to - 5.41 to + 5.43 ml. Changes in SVlv and SVwf were directionally concordant in response to VCO's and during severe arrhythmia. (R = 0.868). The SVwf and SVlv methods are interchangeable with respect to measuring absolute stroke volume as well as tracking changes in stroke volume. The precision of the non-calibrated WKflow method is about 10% which improved to 7.5% after one calibration per patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080671PMC
http://dx.doi.org/10.1007/s10877-019-00320-0DOI Listing

Publication Analysis

Top Keywords

stroke volume
16
svlv svwf
12
intra-aortic balloon
8
balloon pumping
8
patients undergoing
8
vco series
8
severe arrhythmia
8
iabp accuracy
8
accuracy improved
8
iabp
7

Similar Publications

Purpose Of Review: This review aims to explore the complex interplay between atrial functional mitral regurgitation (AFMR), atrial fibrillation (AF), and heart failure with preserved ejection fraction (HFpEF). The goal is to define these conditions, examine their underlying mechanisms, and discuss treatment perspectives, particularly addressing diagnostic challenges.

Recent Findings: Recent research highlights the rising prevalence of AFMR, now accounting for nearly one-third of significant mitral regurgitation cases.

View Article and Find Full Text PDF

Objective: Although left ventricular hypertrophy frequently accompanies end-stage renal disease, heart failure (HF) with reduced ejection fraction (EF) is also observed in a subset of patients. In those patients kidney transplantation (KT) is generally avoided due to an increased risk of mortality in addition to the risks associated with HF. This prospective study was designed to follow patients with HF who were being prepared for KT.

View Article and Find Full Text PDF

Objective: Limited information is available regarding the associations between upper extremity function, activities of daily living (ADLs), and functional capacity in patients with heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate the associations between upper extremity function, ADLs, and functional capacity in patients with HFrEF.

Methods: This cross-sectional study included 31 patients with HFrEF.

View Article and Find Full Text PDF

: The aim of this study is to assess whether changes in Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV) following a VtC can predict the response to fluid administration in patients undergoing surgery under general anesthesia with protective mechanical ventilation. : A total of 40 patients undergoing general surgery or vascular surgery without clamping the aorta were enrolled. Protective mechanical ventilation was applied, and the radial artery was catheterized in all patients.

View Article and Find Full Text PDF

Heart and lung sharing the same anatomical space are influenced by each other. Spontaneous breathing induces dynamic changes in intrathoracic pressure, impacting cardiac function, particularly the right ventricle. In intensive care units (ICU), mechanical ventilation (MV) and therefore positive end-expiratory pressure (PEEP) are often applied, and this inevitably influences cardiac function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!