Correction for 'Mercapto-benzothiazolyl based ruthenium(ii) borate complexes: synthesis and reactivity towards various phosphines' by Mohammad Zafar, et al., Dalton Trans., 2019, DOI: 10.1039/c9dt00498j.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt90115aDOI Listing

Publication Analysis

Top Keywords

based rutheniumii
8
rutheniumii borate
8
borate complexes
8
complexes synthesis
8
synthesis reactivity
8
correction mercapto-benzothiazolyl
4
mercapto-benzothiazolyl based
4
reactivity phosphines
4
phosphines correction
4
correction 'mercapto-benzothiazolyl
4

Similar Publications

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

There has been growing effort in the scientific community to develop new antibiotics to address the major threat of bacterial resistance. One promising approach is the use of metal complexes that provide broader opportunities. Among these systems, polypyridine-ruthenium(II) complexes have received particular attention as drug candidates.

View Article and Find Full Text PDF

The 4-methyl-2-(pyridin-2-yl)-2,1-borazaronaphthalene molecule Hazab-py has been successfully used, for the first time, as a ligand in a ruthenium(II) polypyridine complex A (with the formula [Ru(dtbbpy)(azab-py)], where dtbbpy = 4,4'-di--butyl-2,2'-bipyridine). This compound was characterized by NMR spectroscopy and high-resolution mass spectrometry (MS), and its electrochemical and photophysical properties were fully investigated and compared to those of its homoleptic analogue [Ru(dtbbpy)] (B), an archetypical mono-cationic cyclometalated complex C (with the formula [Ru(dtbbpy)(ppy)], where Hppy = 2-phenylpyridine), and the more structurally similar analogue [Ru(dtbbpy)(naft-py)] (D), where the B-N unit of the azaborine ligand is replaced by a standard CC one, resulting in the 2-(naphthalen-2-yl)pyridine ligand (Hnaft-py). The presence of the novel 1,2-azaborine ligand induces a 0.

View Article and Find Full Text PDF

Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!