The malformation and disordered remodeling of bones induce various diseases, including osteoporosis. We have developed atmospheric SEM (ASEM) to directly observe aldehyde-fixed bone tissue immersed in radical scavenger buffer without thin sectioning. The short procedure realized the observation of bone mineralization surrounded by many cells and matrices in natural aqueous buffer, decreasing the risk of changes. In osteoblast primary cultures, mineralization was visible without staining. Correlative energy dispersive X-ray spectrometry indicated the formation of calcium phosphate mineral. Fixed bone was sectioned, and the section surface was inspected by ASEM. Mineralized trabeculae of talus spongy bone were directly visible. Associated large and small cells were revealed by phosphotungstic acid staining, suggesting remodeling by bone-absorbing osteoclasts and bone-rebuilding osteoblasts. In tibia, cortical bone layer including dense grains, was bordered by many cells with protrusions. Tissue immuno-EM performed in solution for the first time and anti-cathepsin-K antibody, successfully identified osteoclasts in femur spongy bone. A microfluidics chamber fabricated on the silicon nitride film window of an ASEM dish allowed mineralization to be monitored in vitro; calcium phosphate crystals as small as 50 nm were imaged. ASEM is expected to be widely applied to study bio-mineralization and bone-remodeling, and to help diagnose bone-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517404 | PMC |
http://dx.doi.org/10.1038/s41598-019-43608-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!