have long been the main source of antibiotics, secondary metabolites with tightly controlled biosynthesis by environmental and physiological factors. Phosphorylation of exogenous glucosamine has been suggested as a mechanism for incorporation of this extracellular material into secondary metabolite biosynthesis, but experimental evidence of specific glucosamine kinases in is lacking. Here, we present the molecular fingerprints for the identification of a unique family of actinobacterial glucosamine kinases. Structural and biochemical studies on a distinctive kinase from the soil bacterium unveiled its preference for glucosamine and provided structural evidence of a phosphoryl transfer to this substrate. Conservation of glucosamine-contacting residues across a large number of uncharacterized actinobacterial proteins unveiled a specific glucosamine binding sequence motif. This family of kinases and their genetic context may represent the missing link for the incorporation of environmental glucosamine into the antibiotic biosynthesis pathways in and can be explored to enhance antibiotic production. The discovery of novel enzymes involved in antibiotic biosynthesis pathways is currently a topic of utmost importance. The high levels of antibiotic resistance detected worldwide threaten our ability to combat infections and other 20th-century medical achievements, namely, organ transplantation or cancer chemotherapy. We have identified and characterized a unique family of enzymes capable of phosphorylating glucosamine to glucosamine-6-phosphate, a crucial molecule directly involved in the activation of antibiotic production pathways in , nature's main source of antimicrobials. The consensus sequence identified for these glucosamine kinases will help establish a molecular fingerprint to reveal yet-uncharacterized sequences in antibiotic producers, which should have an important impact in biotechnological and biomedical applications, including the enhancement and optimization of antibiotic production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520443 | PMC |
http://dx.doi.org/10.1128/mBio.00239-19 | DOI Listing |
Front Immunol
January 2025
Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
Biochem Biophys Res Commun
January 2025
Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523000, China. Electronic address:
Progranulin (PGRN) is overexpressed and implicated in hepatocellular carcinoma (HCC) development; however, its post-translational modifications and regulatory mechanisms in HCC remain largely unexplored. Here, the expression levels of PGRN, OGT, and O-GlcNAcylation were found to be elevated in both HCC samples and cell lines. LC-MS/MS analysis and immunoprecipitation revealed that PGRN underwent O-linked N-acetylglucosamine (O-GlcNAc) modification at threonine 272 (Thr272).
View Article and Find Full Text PDFCell Rep
November 2024
JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA. Electronic address:
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation.
View Article and Find Full Text PDFAFY02 (LR-AFY02) is a newly discovered strain isolated and identified from naturally fermented yogurt in Xinjiang, China. This research aims to investigate the mechanism of action of LR-AFY02 in mice with acute gouty arthritis. We examined the degree of foot swelling, pain threshold, blood biochemical indicators, histopathological changes, and mRNA expression.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Research Center, KS, USA; University of Kansas Cancer Center, Kansas City, KS, USA. Electronic address:
Objective: Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates.
Method: To address the pleotropic nature of O-GlcNAc, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics.
Results: We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!