Glioblastomas are lethal brain tumors that are treated with conventional radiation (X-rays and gamma rays) or particle radiation (protons and carbon ions). Paradoxically, radiation is also a risk factor for GBM development, raising the possibility that radiotherapy of brain tumors could promote tumor recurrence or trigger secondary gliomas. In this study, we determined whether tumor suppressor losses commonly displayed by patients with GBM confer susceptibility to radiation-induced glioma. Mice with Nestin-Cre-driven deletions of and alleles were intracranially irradiated with X-rays or charged particles of increasing atomic number and linear energy transfer (LET). Mice with loss of one allele each of and did not develop spontaneous gliomas, but were highly susceptible to radiation-induced gliomagenesis. Tumor development frequency after exposure to high-LET particle radiation was significantly higher compared with X-rays, in accordance with the irreparability of DNA double-strand breaks (DSB) induced by high-LET radiation. All resultant gliomas, regardless of radiation quality, presented histopathologic features of grade IV lesions and harbored populations of cancer stem-like cells with tumor-propagating properties. Furthermore, all tumors displayed concomitant loss of heterozygosity of and along with frequent amplification of the receptor tyrosine kinase, which conferred a stem cell phenotype to tumor cells. Our results demonstrate that radiation-induced DSBs cooperate with preexisting tumor suppressor losses to generate high-grade gliomas. Moreover, our mouse model can be used for studies on radiation-induced development of GBM and therapeutic strategies. SIGNIFICANCE: This study uncovers mechanisms by which ionizing radiation, especially particle radiation, promote GBM development or recurrence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635038 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-19-0680 | DOI Listing |
Sci Rep
January 2025
Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.
Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.
View Article and Find Full Text PDFRadiat Oncol J
December 2024
Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea.
Purpose: This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world's first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials And Methods: Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results: This report elaborates on the clinical preparation for adopting CIRT in Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!