Background: MicroRNA (miRNA) mediate post-transcriptional gene repression and are involved in a variety of human diseases, including cancer. Soft tissue sarcomas are rare malignancies with a variety of histological subtypes which may occur virtually anywhere in the human body. Leiomyosarcoma is one of the most common subtypes, shows a smooth muscle phenotype and its cancerogenesis is still unclear. The aim of our study was to investigate the potential role of miRNA differential expression in leiomyosarcoma development.

Methods: We first employed the Sarcoma microRNA Expression Database, a repository that describes the patterns of over 1000 miRNA expression in various human sarcoma types, to identify differentially expressed miRNA comparing leiomyosarcoma and smooth muscle samples. Subsequently, we identified putative target genes of those miRNAs with the TargetScan prediction tool. Finally, we evaluated whether the retrieved pool of putative targets was enriched in genes belonging to specific molecular pathways by means of the Enrichr analysis tool. Protein-protein network analysis was analyzed by means of the STRING web tool.

Results: Out of 1120 miRNAs tested, the expression of 301 miRNAs was statistically significantly different between leiomyosarcoma and smooth muscle samples. The hypothetical targets could be predicted for 172 miRNAs. 438 genes were predicted to be the targets with high confidence (cumulative weighted context score cut-off level less than - 1.0) and analyzed for belonging to specific molecular pathways. Pathway analysis suggested that RNA Polymerase III, tRNA functions and synaptic neurotransmission (with special regard to dopamine mediated signaling) could be involved in leiomyosarcoma development.

Conclusions: Our results demonstrate that data mining of publicly available repositories can be useful to suggest molecular pathways underlying the pathogenesis of rare tumors such as leiomyosarcoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515658PMC
http://dx.doi.org/10.1186/s12967-019-1907-2DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
molecular pathways
12
leiomyosarcoma smooth
8
muscle samples
8
belonging specific
8
specific molecular
8
leiomyosarcoma
7
mirna
5
mirna deregulation
4
targets
4

Similar Publications

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.

Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

miR-432-5p Targeting SORT1 to Protect Artery Smooth Muscle Cells and Inhibit Coronary Artery Disease.

Biochem Genet

December 2024

Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.

Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear. Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!