The bright emission observed in cesium lead halide perovskite nanocrystals (NCs) has recently been explained in terms of a bright exciton ground state [ Becker et al. Nature 2018 , 553 , 189 - 193 ], a claim that would make these materials the first known examples in which the exciton ground state is not an optically forbidden dark exciton. This unprecedented claim has been the subject of intense experimental investigation that has so far failed to detect the dark ground-state exciton. Here, we review the effective-mass/electron-hole exchange theory for the exciton fine structure in cubic and tetragonal CsPbBr NCs. In our calculations, the crystal field and the short-range electron-hole exchange constant were calculated using density functional theory together with hybrid functionals and spin-orbit coupling. Corrections associated with long-range exchange and surface image charges were calculated using measured bulk effective mass and dielectric parameters. As expected, within the context of the exchange model, we find an optically inactive ground exciton level. However, in this model, the level order for the optically active excitons in tetragonal CsPbBr NCs is opposite to what has been observed experimentally. An alternate explanation for the observed bright exciton level order in CsPbBr NCs is offered in terms of the Rashba effect, which supports the existence of a bright ground-state exciton in these NCs. The size dependence of the exciton fine structure calculated for perovskite NCs shows that the bright-dark level inversion caused by the Rashba effect is suppressed by the enhanced electron-hole exchange interaction in small NCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b01467 | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Center on Nanoenergy Research, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China.
Angew Chem Int Ed Engl
December 2024
Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China.
Developing smart materials with tunable high-temperature afterglow (HTA) luminescence remains a formidable challenge. This study presents a metal-free doping system using boric acid as matrix and polycyclic aromatic hydrocarbons as dopants. This composition achieves dynamically tunable afterglow combining a bright blue HTA lasting for over ten seconds even at 150 °C and an ultra-long yellow room-temperature phosphorescence below 110 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!