Antifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example. The aim of this article is to provide a concise comparison of a range of natural and synthetic materials that are known to have IRI, thus providing a guide to see if a new synthetic mimic is active or not, including emerging materials which are comparatively weak compared to antifreeze proteins, but may have technological importance. The link between activity and the mechanisms involving either ice binding or amphiphilicity is discussed and known materials assigned into classes based on this.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828557PMC
http://dx.doi.org/10.1002/mabi.201900082DOI Listing

Publication Analysis

Top Keywords

antifreeze proteins
12
ice recrystallization
8
mimicking ice
4
recrystallization activity
4
activity biological
4
biological antifreezes
4
antifreezes polymer
4
polymer "active"?
4
antifreeze
4
"active"? antifreeze
4

Similar Publications

Antifreeze Protein-Inspired Zwitterionic Graphene Oxide Nanosheets for a Photothermal Anti-icing Coating.

Nano Lett

January 2025

Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.

View Article and Find Full Text PDF

Glycosylated peptides isolated from cheese whey have antifreezing activity.

Food Chem

December 2024

Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:

The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.

View Article and Find Full Text PDF

The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.

View Article and Find Full Text PDF

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Gold Nanoparticles Decorated with HPLC6-Derived Peptides as a Platform for Ice Recrystallization Inhibition.

Biomacromolecules

December 2024

DISFARM, Department of Pharmaceutical Sciences, "A. Marchesini" General and Organic Chemistry Section, Università degli Studi di Milano, Via Venezian 21, Milan 20133, Italy.

In nature, organisms living in extreme environmental conditions produce antifreeze proteins (AFPs) that prevent the growth of ice crystals and depress the freezing point of body fluids. In this study, three different peptides derived from the N-terminal sequence of the helical type I AFP HPLC6, along with a stapled derivative produced via on-resin microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition, were conjugated to gold nanoparticles. The aim of decorating the surface of the nanoparticles with multiple copies of the peptides was to combine the ice-binding capability of the peptides with the size of a nanoparticle, thus, mimicking the protein bulkiness to enhance the peptide antifreeze activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!