AI Article Synopsis

  • The study focused on how climate stress leads to tree die-off, specifically looking at the point of hydraulic failure in loblolly pine saplings.
  • They discovered that a loss of 80% hydraulic conductivity serves as a critical threshold, beyond which tree mortality is highly likely.
  • The research also highlighted that changes in leaf color occur after the trees have already died, indicating that monitoring these signs alone won't effectively predict mortality.

Article Abstract

Determining physiological mechanisms and thresholds for climate-driven tree die-off could help improve global predictions of future terrestrial carbon sinks. We directly tested for the lethal threshold in hydraulic failure - an inability to move water due to drought-induced xylem embolism - in a pine sapling experiment. In a glasshouse experiment, we exposed loblolly pine (Pinus taeda) saplings (n = 83) to drought-induced water stress ranging from mild to lethal. Before rewatering to relieve drought stress, we measured native hydraulic conductivity and foliar color change. We monitored all measured individuals for survival or mortality. We found a lethal threshold at 80% loss of hydraulic conductivity - a point of hydraulic failure beyond which it is more likely trees will die, than survive, and describe mortality risk across all levels of water stress. Foliar color changes lagged behind hydraulic failure - best predicting when trees had been dead for some time, rather than when they were dying. Our direct measurement of native conductivity, while monitoring the same individuals for survival or mortality, quantifies a continuous probability of mortality risk from hydraulic failure. Predicting tree die-off events and understanding the mechanism involved requires knowledge not only of when trees are dead, but when they begin dying - having passed the point of no return.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771894PMC
http://dx.doi.org/10.1111/nph.15922DOI Listing

Publication Analysis

Top Keywords

hydraulic failure
20
point return
8
tree die-off
8
lethal threshold
8
water stress
8
hydraulic conductivity
8
foliar color
8
individuals survival
8
survival mortality
8
mortality risk
8

Similar Publications

Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties, thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP).

View Article and Find Full Text PDF

Concrete structures in cold regions are affected by freeze-thaw cycles (FTCs) and carbonation, which lead to the premature failure of concrete structures. The carbonation depth, relative dynamic elastic modulus (RDEM), compressive strength, porosity, and pore size distribution of concrete under FTC conditions were tested through an accelerated carbonation experiment to study the carbonation performance evolution. The freeze-thaw effect mechanism on concrete carbonation was further analyzed via the obtained relationship between carbonation depth and pore structure.

View Article and Find Full Text PDF

A Modified Multiaxial Fatigue Model and Its Application for the Fatigue Life Prediction of Aircraft Hydraulic Pipes.

Materials (Basel)

December 2024

School of Mechatronic Engineering, Xidian University, No. 2 South Taibai Road, Xi'an 710071, China.

The fatigue failure of a structure may occur under a multiaxial vibration environment; it is necessary to establish a better multiaxial fatigue life prediction model to predict the fatigue life of the structure. This study proposes a new model (MWYT) by introducing the maximum absolute shear stress into the WYT model. The feasibility of the MWYT model is verified by using the multiaxial fatigue experimental data of 304 stainless steel, Q235B steel, 7075-T651 aluminum alloy and S355J0 steel.

View Article and Find Full Text PDF

Pore pressure inhibits clustering of induced earthquakes in Western Canada.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.

Induced earthquakes are manifestations of highly heterogeneous distributions of effective stress changes imparted by anthropogenic activities such as hydraulic fracturing and wastewater injection. It is critical to disentangle the mechanisms behind these earthquakes to better assess seismic risk. Here, a clustering methodology is applied to a catalog of 21,536 induced earthquakes detected during a 36-d hydraulic stimulation program in Western Canada.

View Article and Find Full Text PDF

Wellbore stability in extreme drilling environments remains a critical challenge. This study advances the understanding of these complexities through a comprehensive numerical modeling approach. By incorporating thermal, chemical, and hydraulic effects, four refined models were developed to simulate wellbore behavior under high pressures and temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!