Most of the world's land surface is currently under human use and natural habitats remain as fragmented samples of the original landscapes. Measuring the quality of plant progeny sired in these pervasive environments represents a fundamental endeavour for predicting the evolutionary potential of plant populations remaining in fragmented habitats and thus their ability to adapt to changing environments. By means of hierarchical and phylogenetically independent meta-analyses we reviewed habitat fragmentation effects on the genetic and biological characteristics of progenies across 179 plant species. Progeny sired in fragmented habitats showed overall genetic erosion in contrast with progeny sired in continuous habitats, with the exception of plants pollinated by vertebrates. Similarly, plant progeny in fragmented habitats showed reduced germination, survival and growth. Habitat fragmentation had stronger negative effects on the progeny vigour of outcrossing- than mixed-mating plant species, except for vertebrate-pollinated species. Finally, we observed that increased inbreeding coefficients due to fragmentation correlated negatively with progeny vigour. Our findings reveal a gloomy future for angiosperms remaining in fragmented habitats as fewer sired progeny of lower quality may decrease recruitment of plant populations, thereby increasing their probability of extinction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.13272 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.
Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.
View Article and Find Full Text PDFInsects
January 2025
Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
Habitat fragmentation and land use changes threaten neotropical habitats and alter patterns of diversity at forest edges. Like other arthropod assemblages, neotropical fruit-feeding butterfly communities show strong vertical stratification within forests, with some recent work showing its potential role in speciation. At forest edges, species considered to be forest canopy specialists have been observed descending to the forest understory, with the similarity in light conditions between the canopy and understory strata at edges hypothesized to be responsible for this phenomenon.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
Climate change and human disturbance are critical factors affecting the habitat distribution of wild animals, with implications for management strategies such as protecting migration corridors, habitat restoration, and species conservation. In the Hupingshan National Nature Reserve (NNR), Reeve's muntjac () is a key prey species for the South China tiger (), which is extinct in the wild and targeted for reintroduction by the Chinese government. Thus, understanding the habitat distribution and abundance of Reeve's muntjac is essential to ensure the survival and sustainability of reintroduced tiger populations.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
January 2025
Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar - Región NOA (IPAF NOA), Instituto Nacional de Tecnología Agropecuaria (INTA), Posta de Hornillos, 4624 Jujuy, Argentina.
Sarcoptic mange has been described in domestic South American camelids (SACs), exported to non-Andean countries, and in wild SAC in their natural habitat. Reports on the incidence of this infestation in llamas or alpacas raised in their original location, on the other hand, are missing. The present study aimed to detect and characterize cases of sarcoptic mange in herds of llamas (Lama glama) raised in the high plateau region (Puna) of the province of Jujuy, Argentina.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile.
Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!