Purpose: The presence of range uncertainties hinders the exploitation of the full potential of charged particle therapy. Several range verification techniques have been proposed to mitigate this limitation. Prompt gamma spectroscopy (PGS) is among the most promising solutions for online and in vivo range verification. In this work, we present the experimental results of the detection of prompt gamma radiation, induced by He beams at the Heidelberg Ion-Beam Therapy Center (HIT). The results were obtained, using a spectroscopic unit of which the design has been optimized using Monte Carlo simulations.
Methods: The spectroscopic unit is composed by a primary cerium bromide (CeBr ) crystal surrounded by a secondary bismuth germanate (BGO) crystal for anticoincidence detection (AC). The digitalization of the signals is performed with an advanced FADC/FPGA system. The He beams at clinical energies and intensities are delivered to multiple targets in the experimental cave at the HIT. We analyze the production of prompt gamma on oxygen and carbon targets, as well as high Z materials such as titanium and aluminum. The quantitative analysis includes a systematic comparison of the signal-to-noise ratio (SNR) improvement for the spectral lines when introducing the AC detection. Moreover, the SNR improvement could provide a reduction of the number of events required to draw robust conclusions. We perform a statistic analysis to determine the magnitude of such an effect.
Results: We present the energy spectra detected by the primary CeBr and the secondary BGO. The combination of these two detectors leads to an average increase of the signal-to-noise ratio by a factor 2.1, which confirms the Monte Carlo predictions. The spectroscopic unit is capable of detecting efficiently the discrete gamma emission over the full energy spectrum. We identify and analyze 19 independent spectral lines in an energy range spacing from MeV to MeV. Moreover, when introducing the AC detection, the number of events required to determine robustly the intensity of the discrete lines decreases. Finally, the analysis of the low-energy reaction lines determines whether a thin metal insert is introduced in the beam direction.
Conclusions: This work provides the experimental characterization of the spectroscopy unit in development for range verification through PGS at the HIT. Excellent performances have been demonstrated over the full prompt gamma energy spectrum with He beams at clinical energies and intensities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13594 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, 92697, USA.
Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
Background/objectives: The emergence of the Omicron variant has complicated COVID-19 control and prompted vaccine updates. Recent studies have shown that a fourth dose significantly protects against infection and severe disease, though long-term immunity data remain limited. This study aimed to assess Anti-S-RBD antibodies and interferon-γ levels in healthcare workers 12 months after receiving bivalent Original/Omicron BA.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea.
Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!