Modified atmospheres such as hermetic storage are widely used for the control of stored grain insect pests. To improve their effectiveness, there is need to better understand insect responses to low-oxygen environments. Adult Callosobruchus maculatus F. (Coleoptera: Chrysomelidae: Bruchinae) on cowpea and Sitophilus oryzae L. (Coleoptera: Curculionidae) on wheat were exposed to hypoxia treatments consisting of 1, 3, and 5% oxygen levels for 14 d. Acoustic activity was monitored during the experiment, and insect mortality and grain quality were examined immediately after the hypoxia treatments. Adult emergence was assessed 45 d post-treatment. All three hypoxia treatments eliminated acoustic activity of both species within 4 d. There was neither insect survival for both species nor significant grain damage immediately after 14-d exposure to hypoxia treatments. No adult insects emerged 45 d post-exposure on grains maintained at 1% oxygen level for 14 d. However, at 3 and 5% oxygen levels, there were eggs on cowpea, holes in wheat, and emerging adults for both insect species 45 d post-exposure. Although insect activity ceased within 4 d when hypoxia was maintained below 5%, there is need to explore exposure beyond 14 d for 3 and 5% oxygen levels, to ensure to avoid potential adult emergence from eggs and other insect life stages post-treatments. Maintaining 3-5% hypoxia conditions for a longer duration would ensure insufficient oxygen is available for progeny development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678073PMC
http://dx.doi.org/10.1093/jee/toz110DOI Listing

Publication Analysis

Top Keywords

hypoxia treatments
16
acoustic activity
12
adult emergence
12
oxygen levels
12
grain quality
8
treatments adult
8
insect
7
hypoxia
6
adult
5
oxygen
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!