" Synechococcus feldmannii" is a facultative intracellular symbiont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information of sponge-associated cyanobacteria derives thus far from the obligate and extracellular symbiont " Synechococcus spongiarum." Here we utilized a differential methylation-based approach for bacterial DNA enrichment combined with metagenomics to obtain the first draft genomes of " Synechococcus feldmannii." By comparative genomics, we revealed that some genomic features (e.g., iron transport mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated proteins]) are unique to both symbiont types and absent or rare in the genomes of taxonomically related free-living cyanobacteria. These genomic features likely enable life under the conditions found inside the sponge host. Interestingly, there are many genomic features that are shared by ". Synechococcus feldmannii" and free-living cyanobacteria, while they are absent in the obligate symbiont " Synechococcus spongiarum." These include genes related to cell surface structures, genetic regulation, and responses to environmental stress, as well as the composition of photosynthetic genes and DNA metabolism. We speculate that the presence of these genes confers on " Synechococcus feldmannii" its facultative nature (i.e., the ability to respond to a less stable environment when free-living). Our comparative analysis revealed that distinct genomic features depend on the nature of the symbiotic interaction: facultative and intracellular versus obligate and extracellular. Given the evolutionary position of sponges as one of the earliest phyla to depart from the metazoan stem lineage, studies on their distinct and exceptionally diverse microbial communities should yield a better understanding of the origin of animal-bacterium interactions. While genomes of several extracellular sponge symbionts have been published, the intracellular symbionts have, so far, been elusive. Here we compare the genomes of two unicellular cyanobacterial sponge symbionts that share an ancestor but followed different evolutionary paths-one became intracellular and the other extracellular. Counterintuitively, the intracellular cyanobacteria are facultative, while the extracellular ones are obligate. By sequencing the genomes of the intracellular cyanobacteria and comparing them to the genomes of the extracellular symbionts and related free-living cyanobacteria, we show how three different cyanobacterial lifestyles are reflected by adaptive genomic features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506613 | PMC |
http://dx.doi.org/10.1128/mSystems.00057-19 | DOI Listing |
BMC Genomics
December 2024
College of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China.
Background: The presence of isocitrate dehydrogenase (IDH) mutations and 1p/19q codeletion significantly influences the diagnosis and prognosis of patients with lower-grade gliomas (LGGs). The ability to predict these molecular signatures preoperatively can inform surgical strategies. This study sought to establish an interpretable imaging feature set for predicting molecular signatures and overall survival in LGGs.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy. Electronic address:
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive subtype of epithelial ovarian cancer and a leading cause of mortality among gynecologic malignancies. This review aims to comprehensively analyze the morphological, immunohistochemical, and molecular features of HGSOC, highlighting its pathogenesis and identifying biomarkers with diagnostic, prognostic, and therapeutic significance. Special emphasis is placed on the role of tumor microenvironment (TME) and genomic instability in shaping the tumor's behavior and therapeutic vulnerabilities.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:
The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.
View Article and Find Full Text PDFDrug Resist Updat
December 2024
Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China. Electronic address:
To characterize the genomic features of a community-acquired Acinetobacter baumannii strain, co-carrying tet(X6) and bla genes, but was susceptible to tigecycline and carbapenems. The tet(X6) and bla genes were found on a 149,518 bp non-conjugative plasmid. The bla gene was silent, due to the presence of an intact ISAba3-like element upstream, which rendered the strain susceptible to carbapenems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!