A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Climate change impact on fluvial flooding in the Indian sub-basin: A case study on the Adyar sub-basin. | LitMetric

Flooding is one of the most disastrous global hazards, which has been occurring more frequently in recent times. It is observed that climate change is likely to increase the intensity and the frequency of floods and river basins have become more vulnerable to fluvial flooding. In this study, the impact of climate change on fluvial flooding was analyzed over the Adyar sub-basin. This study applied statistically downscaled Global Climate Model (GCM) data in a CMIP5 dataset of IPCC Assessment Report 5 (AR5). Based on the performance to simulate the observed climate, four GCMs, namely, cesm1-cam5, mpi-esm-mr, ncar-ccsm4, and bnu-esm, for RCP 4.5 were selected for projections of the future scenario. The Intensity-Duration-Frequency (IDF) curves for the past and future scenarios were derived from the IMD-observed and GCM-projected rainfall data. Integrated flood modeling was performed with hydrologic (HEC-HMS) and hydraulic (HEC-RAS) models. Finally, in order to visualize the inundation areas according to the future climate projection, flood inundation maps were prepared geospatially using the ArcGIS software. For the 100-year return period, the results predict that the peak discharge for the future climate scenario would increase by 34.3%-91.9% as compared to the present climate scenario. Similarly, the future projections show an increase in the flooded area ranging from 12.6% to 26.4% based on GCMs. This simulation helps in understanding the flood risk over the Adyar sub-basin under the changing climate and the requirement for the regulation of developmental activities over the flood-prone areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516649PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216461PLOS

Publication Analysis

Top Keywords

climate change
12
fluvial flooding
12
adyar sub-basin
12
climate
9
observed climate
8
future climate
8
climate scenario
8
future
5
change impact
4
impact fluvial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!