Time-resolved Kerr rotation measurements were performed in InGaAs/GaAs quantum wells nearby a doped Mn delta layer. Our magneto-optical results show a typical time evolution of the optically-oriented electron spin in the quantum well. Surprisingly, this is strongly affected by the Mn spins, resulting in an increase of the spin precession frequency in time. This increase is attributed to the variation in the effective magnetic field induced by the dynamical relaxation of the Mn spins. Two processes are observed during electron spin precession: a quasi-instantaneous alignment of the Mn spins with photo-excited holes, followed by a slow alignment of Mn spins with the external transverse magnetic field. The first process leads to an equilibrium state imprinted in the initial precession frequency, which depends on pump power, while the second process promotes a linear frequency increase, with acceleration depending on temperature and external magnetic field. This observation yields new information about exchange process dynamics and on the possibility of constructing spin memories, which can rapidly respond to light while retaining information for a longer period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514001PMC
http://dx.doi.org/10.1038/s41598-019-43741-2DOI Listing

Publication Analysis

Top Keywords

precession frequency
12
magnetic field
12
optically-oriented electron
8
electron spin
8
spin precession
8
alignment spins
8
spins
5
acceleration precession
4
frequency
4
frequency optically-oriented
4

Similar Publications

Abnormal chirality in antiferromagnetic resonance modes of van der Waals 2D magnets.

Sci Rep

January 2025

School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Two-dimensional van der Waals (2D vdW) materials have attracted widespread research interest due to their unique physical properties and potential application prospects. In this study, an atomistic-level dynamical simulation method is employed to investigate the chirality of antiferromagnetic resonance modes in CrI bilayer. Beyond the typical observations of a linear increase in high-frequency resonance mode and a linear decrease in low-frequency resonance mode, we have identified a distinct magnetization precession chirality in the CrI bilayer at low magnetic fields: Spins in different layers exhibit opposite precession chirality.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Artifacts at Cardiac MRI: Imaging Appearances and Solutions.

Radiographics

January 2025

From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).

Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!