The platelet-derived growth factor receptor β (PDGFRB) gene translocations lead to a spectrum of chronic myeloid neoplasms, frequently associated with eosinophilia. Clinical heterogeneity is associated with a molecular one. Here, we report a novel case of a patient harboring a t(5;8)(q33;p22) translocation, resulting in the PCM1/PDGFRB fusion. Conventional cytogenetics and RNA sequencing were performed to identify the chromosomes and the genes involved in the rearrangement, respectively. This study shows that the combination of different strategies is pivotal to fine-tune the diagnosis and the clinical management of the patient. After 1 year of treatment with imatinib, the patient achieves hematological and molecular remission. We present an attractive strategy to identify novel and/or cryptic fusions, which will be relevant for clinicians dealing with the diagnosis of the patients with myelodysplastic syndrome/myeloproliferative diseases with atypical manifestations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000497348 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Background: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFBackground: Microglial activation is one of the neuropathological hallmarks of Alzheimer's disease (AD). Evidence suggest that chronic activation of microglia cause neuroinflammation and neuronal injuries, contributing to cognitive impairment. Therefore, modulation of microglial pathway like CSF-1R represents an attractive therapeutic strategy.
View Article and Find Full Text PDFBackground: Evidence suggests glucagon-like peptide 1 receptor agonists (GLP-1RAs) may have therapeutic potential in Alzheimer's disease (AD). Cumulative evidence has indicated a potential reduction in cognitive decline in people with AD, while real-world evidence has shown decreased dementia risk in patients with type 2 diabetes. Non-clinical data reveal that GLP-1RAs impact neuroinflammation and other biological processes believed to be involved in AD pathophysiology, including effects on central and peripheral immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!