Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.258002DOI Listing

Publication Analysis

Top Keywords

neurovascular syndromes
4
syndromes review
4
review pathophysiology
4
pathophysiology lessons
4
lessons learnt
4
learnt prof
4
prof chandy's
4
chandy's paper
4
paper published
4
published 1989
4

Similar Publications

Objective: Thoracic outlet syndrome (TOS) is caused by compression of the neurovascular bundle at the thoracic outlet which often poses a diagnostic challenge. Patient management is often based on surgeon choice and experience. This study aims to describe practices relating to the diagnosis and management of TOS in the UK over a 1-year period.

View Article and Find Full Text PDF

Thoracic outlet syndrome (TOS) is an uncommon condition defined by the compression of neurovascular structures within the thoracic outlet. When conservative management strategies fail to alleviate symptoms, surgical decompression becomes necessary. The purpose of this study is to evaluate and compare the efficacy and safety of regional anesthesia (RA) using spontaneous breathing in contrast to general anesthesia (GA) for patients undergoing surgical intervention for TOS.

View Article and Find Full Text PDF

is rarely associated with neurological manifestations. This report describes a rare case of endocarditis complicated by a cerebral stroke caused by . We also briefly reviewed the neurological clinical spectrum of disease described in the literature.

View Article and Find Full Text PDF

Background: Hindfoot endoscopy is an effective treatment for posterior ankle impingement syndrome (PAIS) and flexor hallucis longus (FHL) tendon disorders. However, FHL tendoscopy, especially from the posteromedial portal, carries a risk of tibial nerve damage. A needle-arthroscopic system with a 1.

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!