Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Groundwater discharge to river and the related heavy metal transportation were estimated for Dabaoshan, a mountain mining area where extensive mining activities had been conducted over 40 years. In the lower reach of the mining area, shallow aquifers were contaminated by varies heavy metals due to the discharge of acid mine drainage. Polluted aquifers act as long-term pollution sources to the surrounding gaining rivers, even after the mining activities were stopped. The natural tracer Rn was measured for river water of the Hengshi River and groundwater adjacent to the river channel in both wet and dry seasons. The total groundwater discharge rate was estimated to be 17.4-26.7 × 10 m day in wet season and 1.9-2.1 × 10 m day in dry season; and the river recharge was 5.6 ± 1.0 × 10 m day in wet season and 2.1 ± 1.0 × 10 m day in dry season. Compared with other mining and natural/artificial factor influenced areas, groundwater discharge rate in Dabaoshan was much lower, but the magnitudes of groundwater-borne Cu, Zn, Mn and Co fluxes were comparable or even much higher. This suggested that groundwater-derived heavy metal fluxes were significant pollution sources to river in the mountain mining area. Meanwhile, the results also suggested that concentrations of Cd, Pb, Cu, Ni, Mn, Fe, Zn and Tl in groundwater increased where the recharge of river water to groundwater occurred, suggesting the recharge of river water can affect heavy metal concentrations of the beneath aquifers, even in a gaining river.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.04.273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!