New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6.

Bone

Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA. Electronic address:

Published: October 2019

AI Article Synopsis

  • LRP5 is crucial for bone formation as it activates Wnt/β-catenin signaling when it interacts with Frizzled receptors and Wnt ligands, and certain mutations in LRP5 cause high bone mass (HBM) disorders.
  • Recent studies observed HBM in two families linked to LRP6 mutations instead of LRP5 defects, with identified mutations in LRP6 leading to similar bone density traits as those seen in LRP5-related HBM.
  • Both LRP5 and LRP6 mutations presented common clinical features such as tall stature, broad jaws, and resistance to fractures, while contrasting patterns were noted when comparing these cases to osteopetrosis patients who showed typical height features.

Article Abstract

LRP5 encodes low-density lipoprotein receptor-related protein 5 (LRP5). When LRP5 with a Frizzled receptor join on the surface of an osteoblast and bind a member of the Wnt family of ligands, canonical Wnt/β-catenin signaling occurs and increases bone formation. Eleven heterozygous gain-of-function missense mutations within LRP5 are known to prevent the LRP5 inhibitory ligands sclerostin and dickkopf1 from attaching to LRP5's first β-propeller, and thereby explain the rare autosomal dominant (AD) skeletal disorder "high bone mass" (HBM). LRP6 is a cognate co-receptor of LRP5 and similarly controls Wnt signaling in osteoblasts, yet the consequences of increased LRP6-mediated signaling remain unknown. We investigated two multi-generational American families manifesting the clinical and routine laboratory features of LRP5 HBM but without an LRP5 defect and instead carrying a heterozygous LRP6 missense mutation that would alter the first β-propeller of LRP6. In Family 1 LRP6 c.602C>T, p.A201V was homologous to LRP5 HBM mutation c.641C>T, p.A214V, and in Family 2 LRP6 c.553A>C, p.N185H was homologous to LRP5 HBM mutation c.593A>G, p.N198S but predicting a different residue at the identical amino acid position. In both families the LRP6 mutation co-segregated with striking generalized osteosclerosis and hyperostosis. Clinical features shared by the seven LRP6 HBM family members and ten LRP5 HBM patients included a broad jaw, torus palatinus, teeth encased in bone and, reportedly, resistance to fracturing and inability to float in water. For both HBM disorders, all affected individuals were taller than average for Americans (Ps < 0.005), but with similar mean height Z-scores (P = 0.7606) and indistinguishable radiographic skeletal features. Absence of adult maxillary lateral incisors was reported by some LRP6 HBM individuals. In contrast, our 16 patients with AD osteopetrosis [i.e., Albers-Schönberg disease (A-SD)] had an unremarkable mean height Z-score (P = 0.9401) lower than for either HBM group (Ps < 0.05). DXA mean BMD Z-scores in LRP6 HBM versus LRP5 HBM were somewhat higher at the lumbar spine (+7.8 vs +6.5, respectively; P = 0.0403), but no different at the total hip (+7.9 vs +7.7, respectively; P = 0.7905). Among the three diagnostic groups, only the LRP6 HBM DXA BMD values at the spine seemed to increase with subject age (R = +0.7183, P = 0.0448). Total hip BMD Z-scores were not significantly different among the three disorders (Ps > 0.05), and showed no age effect (Ps > 0.1). HR-pQCT available only for LRP6 HBM revealed indistinct corticomedullary boundaries, high distal forearm and tibial total volumetric BMD, and finite element analysis predicted marked fracture resistance. Hence, we have discovered mutations of LRP6 that cause a dento-osseous disorder indistinguishable without mutation analysis from LRP5 HBM. LRP6 HBM seems associated with generally good health, providing some reassurance for the development of anabolic treatments aimed to enhance LRP5/LRP6-mediated osteogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2019.05.003DOI Listing

Publication Analysis

Top Keywords

lrp5 hbm
20
lrp5
12
lrp6 hbm
12
hbm
10
lrp6
10
autosomal dominant
8
low-density lipoprotein
8
lipoprotein receptor-related
8
receptor-related protein
8
protein lrp5
8

Similar Publications

The high-bone-mass phenotype of novel transgenic mice with LRP5 A241T mutation.

Bone

October 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China. Electronic address:

Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models.

View Article and Find Full Text PDF

Clinical features, treatment, and follow-up of OPPG and high-bone-mass disorders: LRP5 is a key regulator of bone mass.

Osteoporos Int

August 2024

Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.

Unlabelled: Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient.

View Article and Find Full Text PDF

LRP5 high bone mass (Worth-type autosomal dominant endosteal hyperostosis): case report and historical review of the literature.

Arch Osteoporos

September 2023

Rare Bone Diseases Clinic, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Purpose: LRP5 high bone mass (HBM) is an autosomal dominant endosteal hyperostosis caused by mutations of the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Alternative names included "autosomal dominant osteosclerosis" and "Worth disease." The aim of the paper is to provide an historical overview of a disorder whose literature is complicated and confusing due to the past use of several denominations and lack of reviews.

View Article and Find Full Text PDF

Background And Objective: Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton.

View Article and Find Full Text PDF

Osteoblast Wnt/-catenin signaling conditions skeletal development and health. Bone formation is stimulated when on the osteoblast surface a Wnt binds to low-density lipoprotein receptor-related protein 5 (LRP5) or 6 (LRP6), in turn coupled to a frizzled receptor. Sclerostin and dickkopf1 inhibit osteogenesis if either links selectively to the first β-propeller of LRP5 or LRP6, thereby disassociating these cognate co-receptors from the frizzled receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!