Suppression of WNK1-SPAK/OSR1 Attenuates Bone Cancer Pain by Regulating NKCC1 and KCC2.

J Pain

Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. Electronic address:

Published: December 2019

Our preliminary experiment indicated the activation of with-nolysine kinases 1 (WNK1) in bone cancer pain (BCP) rats. This study aimed to investigate the underlying mechanisms via which WNK1 contributed to BCP. A rat model of BCP was induced by Walker-256 tumor cell implantation. WNK1 expression and distribution in the lumbar spinal cord dorsal horn and dorsal root ganglion were examined. SPS1-related proline/alanine-rich kinase (SPAK), oxidative stress-responsive kinase 1 (OSR1), sodium-potassium-chloride cotransporter 1 (NKCC1), and potassium-chloride cotransporter 2 (KCC2) expression were assessed. Pain behaviors including mechanical allodynia and movement-evoked pain were measured. BCP rats exhibited significant mechanical allodynia, with increased WNK1 expression in the dorsal horn and dorsal root ganglion neurons, elevated SPAK/OSR1 and NKCC1 expression in the dorsal root ganglion, and decreased KCC2 expression in the dorsal horn. WNK1 knock-down by small interfering alleviated mechanical allodynia and movement-evoked pain, inhibited WNK1-SPAK/OSR1-NKCC1 activities, and restored KCC2 expression. In addition, closantel (a WNK1-SPAK/OSR1 inhibitor) improved pain behaviors, downregulated SPAK/OSR1 and NKCC1 expression, and upregulated KCC2 expression in BCP rats. Activation of WNK1-SPAK/OSR1 signaling contributed to BCP in rats by modulating NKCC1 and KCC2 expression. Therefore, suppression of WNK1-SPAK/OSR1 may serve as a potential target for BCP therapy. PERSPECTIVE: Our findings demonstrated that the WNK1-SPAK/OSR1 signaling contributed to BCP in rats via regulating NKCC1 and KCC2. Suppressing this pathway reduced pain behaviors. Based on these findings, the WNK1-SPAK/OSR1 signaling may be a potential target for BCP therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2019.05.005DOI Listing

Publication Analysis

Top Keywords

bcp rats
20
kcc2 expression
20
nkcc1 kcc2
12
contributed bcp
12
dorsal horn
12
dorsal root
12
root ganglion
12
pain behaviors
12
mechanical allodynia
12
expression dorsal
12

Similar Publications

JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation.

Brain Res Bull

January 2025

Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China. Electronic address:

Background: Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP.

View Article and Find Full Text PDF

β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis.

Biochem Biophys Res Commun

February 2025

Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India. Electronic address:

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process.

View Article and Find Full Text PDF

Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα.

Neuropharmacology

March 2025

The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China. Electronic address:

Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research.

View Article and Find Full Text PDF

Role of peroxisome proliferator-activated receptors α and γ in mediating the beneficial effects of β-caryophyllene in a rat model of fragile X syndrome.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy. Electronic address:

β-Caryophyllene (BCP) is a naturally occurring sesquiterpene found in numerous plant species, including Cannabis sativa. BCP has shown a high safety profile and a wide range of biological functions, including beneficial effects in neurodegenerative and inflammatory diseases. Here, we used behavioral, pharmacological, and in-silico docking analyses to investigate the effects and mechanism of action of BCP in Fragile X Syndrome (FXS), the most common inherited cause of Autism Spectrum Disorder (ASD) and intellectual disability.

View Article and Find Full Text PDF

Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats.

Cancer Biol Ther

December 2024

Department of Integrated Traditional Chinese and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!