Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In clinical genetics, the need to discriminate between benign and pathogenic variants identified in patients with neurodevelopmental disorders is an absolute necessity. Copy number variants (CNVs) of small size can enable the identification of genes that are critical for neurologic development. However, assigning a definite association with a specific disorder is a difficult task. Among 328 trios analyzed over seven years of activity in a single laboratory, we identified 19 unrelated patients (5.8%) who carried a small (<500 kb) de novo CNV. Four patients had an additional independent de novo CNV. Nine had a variant that could be assigned as definitely pathogenic, whereas the remaining CNVs were considered as variants of unknown significance (VUS). We report clinical and molecular findings of patients harboring VUS. We reviewed the medical literature available for genes impacted by CNVs, obtained the probability of truncating loss-of-function intolerance, and compared overlapping CNVs reported in databases. The classification of small non-recurrent CNVs remains difficult but, among our findings, we provide support for a role of SND1 in the susceptibility of autism, describe a new case of the rare 17p13.1 microduplication syndrome, and report an X-linked duplication involving KIF4A and DLG3 as a likely cause of epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2019.05.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!