Due to the rapid development of DNA microarray technology, a large number of microarray data come into being and classifying these data has been verified useful for cancer diagnosis, treatment and prevention. However, microarray data classification is still a challenging task since there are often a huge number of genes but a small number of samples in gene expression data. As a result, a computational method for reducing the dimension of microarray data is necessary. In this paper, we introduce a computational gene selection model for microarray data classification via adaptive hypergraph embedded dictionary learning (AHEDL). Specifically, a dictionary is learned from the feature space of original high dimensional microarray data, and this learned dictionary is used to represent original genes with a reconstruction coefficient matrix. Then we use a l-norm regularization to impose the row sparsity on the coefficient matrix for selecting discriminate genes. Meanwhile, in order to capture the localmanifold geometrical structure of original microarray data in a high-order manner, a hypergraph is adaptively learned and embedded into the model. An iterative updating algorithm is designed for solving the optimization problem. In order to validate the efficacy of the proposed model, we have conducted experiments on six publicly available microarray data sets and the results demonstrate that AHEDL outperforms other state-of-the-art methods in terms of microarray data classification. ABBREVIATIONS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.04.060DOI Listing

Publication Analysis

Top Keywords

microarray data
36
data classification
16
data
11
microarray
10
gene selection
8
classification adaptive
8
adaptive hypergraph
8
hypergraph embedded
8
embedded dictionary
8
dictionary learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!