A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serotonergic mechanisms in spinal cord injury. | LitMetric

Serotonergic mechanisms in spinal cord injury.

Exp Neurol

Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Electronic address:

Published: August 2019

Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2019.05.007DOI Listing

Publication Analysis

Top Keywords

5-ht axons
20
spinal cord
16
5-ht
14
cord injury
8
sensory motor
8
motor autonomic
8
autonomic functions
8
5-ht neurotransmission
8
lesion site
8
5-ht axon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!